JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech COURSE STRUCTURE (2016-17) (Common for EEE, ECE, CSE, EIE, BME, IT, ETE, ECM, ICE)

I YEAR II SEMESTER

S. No	Course Code	Course Title	L	Т	Р	Credits	
1	PH201BS	Engineering Physics-II	3	0	0	3	
2	MA202BS	Mathematics-II	4	1	0	4	
3	MA203BS	Mathematics-III	4	1	0	4	
4	CS204ES	Computer Programming in C	3	0	0	3	
5	ME205ES	Engineering Graphics	2	0	4	4	
6	CH206BS	Engineering Chemistry Lab	0	0	3	2	
7	PH207BS	Engineering Physics Lab	0	0	3	2	
8	CS208ES	Computer Programming in C Lab	0	0	3	2	
9	*EA209MC	NCC/NSO	0	0	0	0	
		Total Credits	16	2	13	24	

*Mandatory Course.

PH201BS: ENGINEERING PHYSICS - II

B.Tech. I Year II Sem.

Course Objectives:

- To understand the behavior of a particle quantum mechanically.
- To be able to distinguish pure and impure semi conductors and understand formation of P-N Junction.
- To understand various magnetic and dielectric properties of materials.
- To study super conductor behavior of materials.

Course Outcomes: After completion of this course the student is able to

- Realize the importance of behavior of a particle quantum mechanically.
- Learn concentration estimation of charge carriers in semi conductors.
- Learn various magnetic dielectric properties and apply them in engineering applications.
- Know the basic principles and applications of super conductors.

UNIT - I

Principles of Quantum Mechanics: Waves and particles, de-Broglie hypothesis, matter waves, Davisson and Germer experiment, Heisenberg uncertainty principle, Schrodinger time independent wave equation, physical significance of wave function, particle in 1-D potential box, electron in periodic potential, Kronig-Penny model (qualitative treatment), E-K curve, origin of energy band formation in solids.

UNIT - II

Semiconductor Physics: Fermi level in intrinsic and extrinsic semiconductors, calculation of carrier concentration in intrinsic & extrinsic semiconductors, direct and indirect band gap semiconductors, formation of PN junction, open circuit PN junction, energy diagram of PN junction diode, solar cell: I-V characteristics and applications.

UNIT - III

Dielectric Properties: Electric dipole, dipole moment, dielectric constant, polarizability, electric susceptibility, displacement vector, electronic, ionic and orientation polarizations and calculation of their polarizabilitites, internal field, Clausius-Mossotti relation, Piezoelectricity, pyroelectricity and ferroelectricity-BaTiO₃ structure.

UNIT - IV

Magnetic Properties & Superconductivity: Permeability, field intensity, magnetic field induction, magnetization, magnetic susceptibility, origin of magnetic moment, Bohr magneton, classification of dia, para and ferro magnetic materials on the basis of magnetic moment, hysteresis curve based on domain theory, soft and hard magnetic materials, properties of anti-ferro and ferri magnetic materials,

Superconductivity: Superconductivity phenomenon, Meissner effect, applications of superconductivity.

L T/P/D C 3 0/0/0 3

UNIT - V

Introduction to nanoscience: Origin of nanoscience, nanoscale, surface to volume ratio, quantum confinement, dominance of electromagnetic forces, random molecular motion, bottom-up fabrication: Sol-gel, CVD and PVD techniques, top-down fabrication: ball mill method, characterization by XRD, SEM and TEM.

Text Books:

- 1. Solid State Physics, A. J. Dekkar, Macmillan publishers Ind. Ltd.,
- 2. Solid State Physics, Chales Kittel, Wiley student edition.
- 3. Fundamentals of Physics, Alan Giambattisa, BM Richardson and Robert C Richardson, Tata McGraw hill Publishers.

Reference Books:

- 1. Modern Engineering Physics, K. Vijaya Kumar, S. Chandralingam S. Chand & Co. Pvt. Ltd.,
- 2. University Physics, Francis W. Sears, Hugh D. Young, Marle Zeemansky and Roger A Freedman, Pearson Education.
- 3. Fundamentals of Acoustics, Kinster and Frey, John Wiley and Sons.
- 4. Introduction to Quantum Mechanics Leonard I. Schiff McGraw-Hill

MA102BS/MA202BS: MATHEMATICS - II (Advanced Calculus)

B.Tech. I Year II Sem.

L T/P/D C 4 1/0/0 4

Prerequisites: Foundation course (No prerequisites).

Course Objectives: To learn

- concepts & properties of Laplace Transforms
- solving differential equations using Laplace transform techniques
- evaluation of integrals using Beta and Gamma Functions
- evaluation of multiple integrals and applying them to compute the volume and areas of regions
- the physical quantities involved in engineering field related to the vector valued functions.
- the basic properties of vector valued functions and their applications to line, surface and volume integrals.

Course Outcomes: After learning the contents of this course the student must be able to

- use Laplace transform techniques for solving DE's
- evaluate integrals using Beta and Gamma functions
- evaluate the multiple integrals and can apply these concepts to find areas, volumes, moment of inertia etc of regions on a plane or in space
- evaluate the line, surface and volume integrals and converting them from one to another

UNIT – I

Laplace Transforms: Laplace transforms of standard functions, Shifting theorems, derivatives and integrals, properties- Unit step function, Dirac's delta function, Periodic function, Inverse Laplace transforms, Convolution theorem (without proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT - II

Beta and Gamma Functions: Beta and Gamma functions, properties, relation between Beta and Gamma functions, evaluation of integrals using Beta and Gamma functions. Applications: Evaluation of integrals.

UNIT – III

Multiple Integrals: Double and triple integrals, Change of variables, Change of order of integration. **Applications:** Finding areas, volumes & Center of gravity (evaluation using Beta and Gamma functions).

$\mathbf{UNIT} - \mathbf{IV}$

Vector Differentiation: Scalar and vector point functions, Gradient, Divergence, Curl and their physical and geometrical interpretation, Laplacian operator, Vector identities.

UNIT – V

Vector Integration: Line Integral, Work done, Potential function, area, surface and volume integrals, Vector integral theorems: Greens, Stokes and Gauss divergence theorems (without proof) and related problems.

Text Books:

- 1. Advanced Engineering Mathematics by R K Jain & S R K Iyengar, Narosa Publishers
- 2. Engineering Mathematics by Srimanthapal and Subodh C. Bhunia, Oxford Publishers

References:

- 1. Advanced Engineering Mathematics by Peter V. O. Neil, Cengage Learning Publishers.
- 2. Advanced Engineering Mathematics by Lawrence Turyn, CRC Press

MA203BS: Mathematics - III (Statistical and Numerical Methods)

B.Tech. I Year II Sem.

L T/P/D C 4 1/0/0 4

Prerequisites: Foundation course (No prerequisites).

Course Objectives: To learn

- random variables that describe randomness or an uncertainty in certain realistic situation
- binomial geometric and normal distributions
- sampling distribution of mean, variance, point estimation and interval estimation
- the testing of hypothesis and ANOVA
- the topics those deals with methods to find roots of an equation
- to fit a desired curve by the method of least squares for the given data
- solving ordinary differential equations using numerical techniques

Course Outcomes: After learning the contents of this course the student must be able to

- differentiate among random variables involved in the probability models which are useful for all branches of engineering
- calculate mean, proportions and variances of sampling distributions and to make important decisions s for few samples which are taken from a large data
- solve the tests of ANOVA for classified data
- find the root of a given equation and solution of a system of equations
- fit a curve for a given data
- find the numerical solutions for a given first order initial value problem

UNIT – I

Random variables and Distributions:

Introduction, Random variables, Discrete random variable, Continuous random variable, Probability distribution function, Probability density function, Expectation, Moment generating function, Moments and properties. Discrete distributions: Binomial and geometric distributions. Continuous distribution: Normal distributions.

UNIT – II

Sampling Theory: Introduction, Population and samples, Sampling distribution of means (σ Known)-Central limit theorem, t-distribution, Sampling distribution of means (σ unknown)-Sampling distribution of variances – χ^2 and F- distributions, Point estimation, Maximum error of estimate, Interval estimation.

UNIT – III

Tests of Hypothesis: Introduction, Hypothesis, Null and Alternative Hypothesis, Type I and Type II errors, Level of significance, One tail and two-tail tests, Tests concerning one mean and proportion, two means-proportions and their differences-ANOVA for one-way classified data.

$\mathbf{UNIT} - \mathbf{IV}$

Algebraic and Transcendental Equations & Curve Fitting: Introduction, Bisection Method, Method of False position, Iteration methods: fixed point iteration and Newton Raphson methods. Solving linear system of equations by Gauss-Jacobi and Gauss-Seidal Methods.

Curve Fitting: Fitting a linear, second degree, exponential, power curve by method of least squares.

UNIT – V

Numerical Integration and solution of Ordinary Differential equations: Trapezoidal rule-Simpson's 1/3rd and 3/8th rule- Solution of ordinary differential equations by Taylor's series, Picard's method of successive approximations, Euler's method, Runge-Kutta method (second and fourth order)

Text Books:

- 1. Probability and Statistics for Engineers by Richard Arnold Johnson, Irwin Miller and John E. Freund, New Delhi, Prentice Hall.
- 2. Probability and Statistics for Engineers and Sciences by Jay L. Devore, Cengage Learning.
- 3. Numerical Methods for Scientific and Engineering Computation by M. K. Jain, S. R. K. Iyengar and R. K. Jain, New Age International Publishers

References:

- 1. Fundamentals of Mathematical Statistics by S. C. Guptha & V. K. Kapoor, S. Chand.
- 2. Introductory Methods of Numerical Analysis by S. S. Sastry, PHI Learning Pvt. Ltd.
- 3. Mathematics for engineers and scientists by Alan Jeffrey, 6th edition, CRC press.

CS104ES/CS204ES: COMPUTER PROGRAMMING IN C

B.Tech. I Year II Sem.

L T/P/D C

3 0/0/0 3

Course Objectives:

- To learn the fundamentals of computers.
- To understand the various steps in Program development.
- To learn the syntax and semantics of C Programming Language.
- To learn how to write modular and readable C Programs.
- To learn to write programs using structured programming approach in C to solve problems.

Course Outcomes:

- Demonstrate the basic knowledge of computer hardware and software.
- Ability to write algorithms for solving problems.
- Ability to draw flowcharts for solving problems.
- Ability to code a given logic in C programming language.
- Gain knowledge in using C language for solving problems.

UNIT - I

Introduction to Computers – Computer Systems, Computing Environments, Computer Languages, Creating and running programs, Program Development, algorithms and flowcharts, Number systems-Binary, Decimal, Hexadecimal and Conversions, storing integers and real numbers.

Introduction to C Language – Background, C Programs, Identifiers, Types, Variables, Constants, Input / Output, Operators(Arithmetic, relational, logical, bitwise etc.), Expressions, Precedence and Associativity, Expression Evaluation, Type conversions, Statements- Selection Statements(making decisions) – if and switch statements, Repetition statements (loops)-while, for, do-while statements, Loop examples, other statements related to looping – break, continue, goto, Simple C Program examples.

UNIT - II

Functions-Designing Structured Programs, Functions, user defined functions, inter function communication, Standard functions, Scope, Storage classes-auto, register, static, extern, scope rules, type qualifiers, recursion- recursive functions, Limitations of recursion, example C programs.

Arrays – Concepts, using arrays in C, inter function communication, array applications- linear search, binary search and bubble sort, two – dimensional arrays, multidimensional arrays, C program examples.

UNIT - III

Pointers – Introduction (Basic Concepts), Pointers for inter function communication, pointers to pointers, compatibility, Pointer Applications-Arrays and Pointers, Pointer Arithmetic and

arrays, Passing an array to a function, memory allocation functions, array of pointers, programming applications, pointers to void, pointers to functions.

Strings – Concepts, C Strings, String Input / Output functions, arrays of strings, string manipulation functions, string / data conversion, C program examples.

UNIT - IV

Enumerated, Structure and Union Types – The Type Definition (typedef), Enumerated types, Structures –Declaration, initialization, accessing structures, operations on structures, Complex structures-Nested structures, structures containing arrays, structures containing pointers, arrays of structures, structures and functions, Passing structures through pointers, self referential structures, unions, bit fields, C programming examples, command–line arguments, Preprocessor commands.

UNIT – V

Input and Output – Concept of a file, streams, text files and binary files, Differences between text and binary files, State of a file, Opening and Closing files, file input / output functions (standard library input / output functions for files), file status functions (error handling), Positioning functions (fseek ,rewind and ftell), C program examples.

Text Books:

- 1. Computer Science: A Structured Programming Approach Using C, B. A. Forouzan and R. F. Gilberg, Third Edition, Cengage Learning.
- 2. Programming in C. P. Dey and M Ghosh , Second Edition, Oxford University Press.

Reference Books:

- 1. The C Programming Language, B.W. Kernighan and Dennis M. Ritchie, Second Edition, Pearson education.
- 2. Programming with C, B. Gottfried, 3rd edition, Schaum's outlines, McGraw Hill Education (India) Pvt Ltd.
- 3. C From Theory to Practice, G S. Tselikis and N D. Tselikas, CRC Press.
- 4. Basic computation and Programming with C, Subrata Saha and S. Mukherjee, Cambridge University Press.

ME106ES/ME205ES: ENGINEERING GRAPHICS

B.Tech. I Year II Sem.

L T/P/D C 2 0/0/4 4

Pre-requisites: None

Course objectives:

- To provide basic concepts in engineering drawing.
- To impart knowledge about standard principles of orthographic projection of objects.
- To draw sectional views and pictorial views of solids.

Course Outcomes:

- Ability to prepare working drawings to communicate the ideas and information.
- Ability to read, understand and interpret engineering drawings.

UNIT – I

Introduction To Engineering Drawing: Principles of Engineering Graphics and their Significance, Conic Sections including the Rectangular Hyperbola – General method only. Cycloid, Epicycloid and Hypocycloid Involute. Scales – Plain, Diagonal, and Vernier Scales.

UNIT - II

Orthographic Projections: Principles of Orthographic Projections – Conventions – Projections of Points and Lines Projections of Plane regular geometric figures.—Auxiliary Planes.

UNIT – III

Projections of Regular Solids – Auxiliary Views.

UNIT – IV

Sections or Sectional views of Right Regular Solids – Prism, Cylinder, Pyramid, Cone – Auxiliary views – Sections of Sphere. Development of Surfaces of Right Regular Solids – Prism, Cylinder, Pyramid, and Cone

UNIT – V

Isometric Projections: Principles of Isometric Projection – Isometric Scale – Isometric Views – Conventions – Isometric Views of Lines, Plane Figures, Simple and Compound Solids – Isometric Projection of objects having non- isometric lines. Isometric Projection of Spherical Parts. Conversion of Isometric Views to Orthographic Views and Vice-versa – Conventions Auto CAD: Basic principles only.

Text Books:

- 1. Engineering Drawing / Basant Agrawal and Mc Agrawal/ Mc Graw Hill
- 2. Engineering Drawing/ M.B. Shah, B.C. Rane / Pearson.

Reference Books:

- Engineering Drawing / N.S. Parthasarathy and Vela Murali/ Oxford
 Engineering Drawing N.D. Bhatt / Charotar

CH206BS: ENGINEERING CHEMISTRY LAB

B.Tech. I Year II Sem.

L T/P/D C 0 0/3/0 2

LIST OF EXPERIMENTS

Volumetric Analysis:

- 1. Estimation of Ferrous ion by Dichrometry.
- 2. Estimation of hardness of water by Complexometric method using EDTA.
- 3. Estimation of Ferrous and Ferric ions in a given mixture by Dichrometry.
- 4. Estimation Ferrous ion by Permanganometry.
- 5. Estimation of copper by Iodomery.
- 6. Estimation of percentage of purity of MnO₂ in pyrolusite
- 7. Determination of percentage of available chlorine in bleaching powder.
- 8. Determination of salt concentration by ion- exchange resin.

Instrumental methods of Analysis:

- 1. Estimation of HCl by Conductometry.
- 2. Estimation of Ferrous ion by Potentiometry.
- 3. Determination of Ferrous iron in cement by Colorimetric method.
- 4. Determination of viscosity of an oil by Redwood / Oswald's Viscometer.
- 5. Estimation of manganese in KMnO₄ by Colorimetric method.
- 6. Estimation of HCl and Acetic acid in a given mixture by Conductometry.
- 7. Estimation of HCl by Potentiometry.

Preparation of Polymers:

1. Preparation of Bakelite and urea formaldehyde resin.

Note: All the above experiments must be performed.

Text Books:

- 1. Vogel's Text Book of Quantitative Chemical Analysis, 5th Edition (2015)
- 2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney.
- 3. A Text Book on experiments and calculations in Engineering Chemistry by S.S. Dara S. Chand & Company Ltd., Delhi (2003).

PH107BS/PH207BS: ENGINEERING PHYSICS LAB

B.Tech. I Year II Sem.

L T/P/D C 0 0/3/0 2

LIST OF EXPERIMENTS

- 1. Dispersive power of the material of a prism Spectrometer.
- 2. Determination of wavelengths of white source Diffraction grating.
- 3. Newton's Rings Radius of curvature of Plano convex lens.
- 4. Melde's experiment Transverse and longitudinal modes.
- 5. Charging, discharging and time constant of an R-C circuit.
- 6. L-C-R circuit Resonance & Q-factor.
- 7. Magnetic field along the axis of current carrying coil Stewart and Gees method and to verify Biot Savart's law.
- 8. Study the characteristics of LED and LASER diode.
- 9. Bending losses of fibres & Evaluation of numerical aperture of a given fibre.
- 10. Energy gap of a material of p-n junction.
- 11. Torsional pendulum Rigidity modulus.
- 12. Wavelength of light, resolving power and dispersive power of a diffraction grating using laser.
- 13. V-I characteristics of a solar cell.

Note: Minimum 10 experiments must be performed.

CS108ES/CS208ES: COMPUTER PROGRAMMING IN C LAB

B.Tech. I Year II Sem.

L T/P/D C 0 0/3/0 2

Course Objective:

• To write programs in C using structured programming approach to solve the problems.

Course Outcomes:

- Ability to design and test programs to solve mathematical and scientific problems.
- Ability to write structured programs using control structures and functions.

Recommended Systems/Software Requirements:

- Intel based desktop PC
- GNU C Compiler
- **a**) Write a C program to find the factorial of a positive integer.**b**) Write a C program to find the roots of a quadratic equation.
- 2. a) Write a C program to determine if the given number is a prime number or not.
 - **b**) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- **3.** a) Write a C program to construct a pyramid of numbers.
 b) Write a C program to calculate the following Sum: Sum=1-x²/2! +x⁴/4!-x⁶/6!+x⁸/8!-x¹⁰/10!
- **4. a**) The least common multiple (LCM) of two positive integers a and b is the smallest integer that is evenly divisible by both a and b. Write a C program that reads two integers and calls LCM (a, b) function that takes two integer arguments and returns their LCM. The LCM (a, b) function should calculate the least common multiple by calling the GCD (a, b) function and using the following relation:

LCM (a, b) = ab / GCD (a, b)

b) Write a C program that reads two integers n and r to compute the ncr value using the following relation:

 n_{c_r} (n, r) = n! / r! (n-r)!. Use a function for computing the factorial value of an integer.

- a) Write C program that reads two integers x and n and calls a recursive function to compute xⁿ
 - **b**) Write a C program that uses a recursive function to solve the Towers of Hanoi problem.
 - c) Write a C program that reads two integers and calls a recursive function to compute n_{c_r} value.

- **6.** a) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user using Sieve of Eratosthenes algorithm.
 - **b**) Write a C program that uses non recursive function to search for a Key value in a given list of integers. Use linear search method.
- 7. a) Write a menu-driven C program that allows a user to enter n numbers and then choose between finding the smallest, largest, sum, or average. The menu and all the choices are to be functions. Use a switch statement to determine what action to take. Display an error message if an invalid choice is entered.
 - **b**) Write a C program that uses non recursive function to search for a Key value in a given sorted list of integers. Use binary search method.
- 8 a) Write a C program that implements the Bubble sort method to sort a given list of integers in ascending order.
 - **b**) Write a C program that reads two matrices and uses functions to perform the following:
 - 1. Addition of two matrices
 - 2. Multiplication of two matrices
- 9. a) Write a C program that uses functions to perform the following operations:
 - 1. to insert a sub-string into a given main string from a given position.
 - 2. to delete n characters from a given position in a given string.
 - **b**) Write a C program that uses a non recursive function to determine if the given string is a palindrome or not.
- 10. a) Write a C program to replace a substring with another in a given line of text.
 - **b**) Write a C program that reads 15 names each of up to 30 characters, stores them in an array, and uses an array of pointers to display them in ascending (ie. alphabetical) order.
- **11. a)** 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2's complement of a binary number.
 - **b**) Write a C program to convert a positive integer to a roman numeral. Ex. 11 is converted to XI.
- **12.** a) Write a C program to display the contents of a file to standard output device.
 - **b**) Write a C program which copies one file to another, replacing all lowercase characters with their uppercase equivalents.
- **13.** a) Write a C program to count the number of times a character occurs in a text file. The file name and the character are supplied as command-line arguments.
 - **b**) Write a C program to compare two files, printing the first line where they differ.
- 14. a) Write a C program to change the nth character (byte) in a text file. Use fseek function.

- **b**) Write a C program to reverse the first n characters in a file. The file name and n are specified on the command line. Use fseek function.
- **15.** a) Write a C program to merge two files into a third file (i.e., the contents of the firs t file followed by those of the second are put in the third file).
 - **b**) Define a macro that finds the maximum of two numbers. Write a C program that uses the macro and prints the maximum of two numbers.

Reference Books:

- 1. Mastering C, K.R. Venugopal and S.R. Prasad, TMH Publishers.
- 2. Computer Programming in C, V. Rajaraman, PHI.
- 3. Programming in C, Stephen G. Kochan, Fourth Edition, Pearson Education.
- 4. C++: The complete reference, H. Schildt, TMH Publishers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE & SYLLABUS (2016-17)

II YEAR I SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	MA301BS	Mathematics – IV	4	1	0	4
2	EC302ES	Analog Electronics	4	1	0	4
3	EC303ES	Electrical Technology	4	1	0	4
4	EC304ES	Signals and Stochastic Process	3	1	0	3
5	EC305ES	Network Analysis	3	1	0	3
6	EC306ES	Electronic Devices and Circuits Lab	0	0	3	2
7	EC307ES	Basic Simulation Lab	0	0	3	2
8	EC308ES	Basic Electrical Engineering Lab	0	0	3	2
9	*MC300ES	Environmental Science and Technology	3	0	0	0
		Total Credits	21	5	9	24

II YEAR II SEMESTER

S. No.	Course Code	Course Title	L	Т	Р	Credits
1	EC401ES	Switching Theory and Logic Design	3	1	0	3
2	EC402ES	Pulse and Digital Circuits	4	0	0	4
3	EE404ES	Control Systems	4	1	0	4
4	EC405ES	Analog Communications	4	0	0	4
5	SM405MS	Business Economics and Financial Analysis	3	0	0	3
6	EC406ES	Analog Communications Lab	0	0	3	2
7	EC407ES	Pulse and Digital Circuits Lab	0	0	3	2
8	EC408ES	Analog Electronics Lab	0	0	3	2
9	*MC400HS	Gender Sensitization Lab	0	0	3	0
		Total Credits	18	2	12	24

MA301BS: MATHEMATICS - IV (Complex Variables and Fourier Analysis)

B.Tech. II Year I Sem.

L T P C 4 1 0 4

Prerequisites: Foundation course (No Prerequisites).

Course Objectives: To learn

- differentiation and integration of complex valued functions
- evaluation of integrals using Cauchy's integral formula
- Laurent's series expansion of complex functions
- evaluation of integrals using Residue theorem
- express a periodic function by Fourier series and a non-periodic function by Fourier transform
- to analyze the displacements of one dimensional wave and distribution of one dimensional heat equation

Course Outcomes: After learning the contents of this paper the student must be able to

- analyze the complex functions with reference to their analyticity, integration using Cauchy's integral theorem
- find the Taylor's and Laurent's series expansion of complex functions
- the bilinear transformation
- express any periodic function in term of sines and cosines
- express a non-periodic function as integral representation
- analyze one dimensional wave and heat equation

UNIT – I

Functions of a complex variable: Introduction, Continuity, Differentiability, Analyticity, properties, Cauchy, Riemann equations in Cartesian and polar coordinates. Harmonic and conjugate harmonic functions-Milne-Thompson method

UNIT - II

Complex integration: Line integral, Cauchy's integral theorem, Cauchy's integral formula, and Generalized Cauchy's integral formula, Power series: Taylor's series- Laurent series, Singular points, isolated singular points, pole of order m – essential singularity, Residue, Cauchy Residue theorem (Without proof).

UNIT – III

Evaluation of Integrals: Types of real integrals:

(a) Improper real integrals $\int_{-\infty}^{\infty} f(x) dx$ (b) $\int_{c}^{c+2\pi} f(\cos\theta, \sin\theta) d\theta$

Bilinear transformation- fixed point- cross ratio- properties- invariance of circles.

UNIT – IV

Fourier series and Transforms: Introduction, Periodic functions, Fourier series of periodic function, Dirichlet's conditions, Even and odd functions, Change of interval, Half range sine and cosine series.

Fourier integral theorem (without proof), Fourier sine and cosine integrals, sine and cosine, transforms, properties, inverse transforms, Finite Fourier transforms.

UNIT – V

Applications of PDE: Classification of second order partial differential equations, method of separation of variables, Solution of one dimensional wave and heat equations.

TEXT BOOKS:

- 1. A first course in complex analysis with applications by Dennis G. Zill and Patrick Shanahan, Johns and Bartlett Publishers.
- 2. Higher Engineering Mathematics by Dr. B. S. Grewal, Khanna Publishers.
- 3. Advanced engineering Mathematics with MATLAB by Dean G. Duffy

REFERENCES:

- 1. Fundamentals of Complex Analysis by Saff, E. B. and A. D. Snider, Pearson.
- 2. Advanced Engineering Mathematics by Louis C. Barrett, McGraw Hill.

EC302ES: ANALOG ELECTRONICS

B.Tech. II Year I Sem.

L T P C 4 1 0 4

Course Objectives:

- To introduce circuit realizations with components such as diodes, BJTs and transistors studied earlier.
- To give understanding of various types of amplifier circuits such as small signal, cascaded, large signal and tuned amplifiers.
- To familiarize the Concept of feedback in amplifiers so as to differentiate between negative and positive feedback.

Course Outcomes: Upon completion of the Course, the students will be able to:

- Design and analyze small signal amplifier circuits applying the biasing techniques learnt earlier.
- Cascade different amplifier configurations to obtain the required overall specifications like Gain, Bandwidth, Input and Output interfacing Impedances.
- Design and realize different classes of Power Amplifiers and tuned amplifiers useable for audio and Radio applications.
- Utilize the Concepts of negative feedback to improve the stability of amplifiers and positive feedback to generate sustained oscillations.

UNIT – I

Analysis And Design of Small Signal Low Frequency BJT Amplifiers: Review of transistor biasing, Classification of Amplifiers – Distortion in amplifiers, Analysis of CE, CC, and CB Amplifiers and CE Amplifier with emitter resistance, low frequency response of BJT Amplifiers, effect of coupling and bypass capacitors, Design of single stage RC coupled amplifier Different coupling schemes used in amplifiers, Analysis of Cascaded RC Coupled amplifiers, Cascode amplifier, Darlington pair,

UNIT – II

Transistor At High Frequency: The Hybrid- pi (π) – Common Emitter transistor model, CE short circuit current gain, current gain with resistive load, single stage CE transistor amplifier response, Gain-bandwidth product.

UNIT – III

FET Amplifiers: Analysis of JFET Amplifiers, Analysis of CS, CD, CG JFET Amplifiers, comparison of performance with BJT Amplifiers, Basic Concepts of MOS Amplifiers, – MOSFET – MOSFET Characteristics in Enhancement and Depletion mode – MOS Small signal model, Common source amplifier with resistive, Diode connected and Current source loads, Source follower, Common Gate Stage, Cascode and Folded Cascode Amplifier – frequency response.

UNIT –III

Positive & Negative Feedback In Amplifiers: Classification of amplifiers, Concepts of feedback – Classification of feedback amplifiers – General characteristics of negative feedback amplifiers – Effect of Feedback on Amplifier characteristics – Voltage series, Voltage shunt, Current series and Current shunt Feedback configurations – Simple problems. Condition for oscillations. RC and LC type Oscillators – Frequency and amplitude stability of oscillators – Generalized analysis of LC oscillators, Quartz, Hartley, and Colpitts Oscillators – RC-phase shift and Wien-bridge oscillators.

UNIT – IV

Large Signal Amplifiers: Class A Power Amplifier, Maximum Value of Efficiency of Class – A Amplifier, Transformer Coupled Amplifier, Push Pull and Complimentary Symmetry Class B and Class AB Power Amplifiers – Principle of operation of class –C Amplifier, Transistor Power Dissipation, Heat Sinks.

Tuned Amplifiers: Introduction, Q-Factor, Small Signal Tuned Amplifiers, frequency response of tuned amplifiers

TEXT BOOKS:

- 1. Electronic Devices and Circuits, David A. Bell 5th Edition, Oxford.
- 2. Electronic Devices and Circuits, S. Salivahanan, N. Suresh Kumar, A Vallvaraj, 5th Edition, MC GRAW HILL EDUCATION.
- 3. Electronics circuits and applications, Md H Rashid, Cengage 2014

REFERENCES:

- 1. Integrated Electronics, Jacob Millman, Christos C Halkias, McGraw Hill Education
- 2. Electronic Devices and Circuits theory– Robert L. Boylestead, Louis Nashelsky, 11th Edition, 2009, Pearson.
- 3. Electronic Devices Conventional and current version -Thomas L. Floyd 2015, person

EC303ES: ELECTRICAL TECHNOLOGY

B.Tech. II Year I Sem.

L T P C 4 1 0 4

Course Objectives:

- To know the basic principle of DC generators and motors.
- To know the basic principle of single phase transformers.
- To understand the basic principle of three-phase induction motor and alternators.
- To understand the basic principle of special motors and electrical instruments.

Course Outcome:

- To analyze the performance of dc generators and motors.
- To analyze the performance of transformers.
- To learn the in-depth knowledge on three phase induction motors.
- To analyze the performance of special motors and electrical instruments in real time applications.

UNIT - I

D.C Generators and DC Motors: Principle of operation of DC Machines- EMF equation – Types of generators – Magnetization and load characteristics of DC generators, DC Motors – Types of DC Motors – Characteristics of DC motors – 3-point starters for DC shunt motor – Losses and efficiency – Swinburne's test – Speed control of DC shunt motor – Flux and Armature voltage control methods.

UNIT - II

Transformers & Performance: Principle of operation of single phase transformer – types – Constructional features – Phasor diagram on No Load and Load – Equivalent circuit, Losses and Efficiency of transformer and Regulation – OC and SC tests – Predetermination of efficiency and regulation (Simple Problems).

UNIT - III

Three Phase Induction Motor: Principle of operation of three-phase induction motors –Slip ring and Squirrel cage motors – Slip-Torque characteristics – Efficiency calculation – Starting methods.

UNIT - IV

Alternators: Alternators – Constructional features – Principle of operation – Types - EMF Equation – Distribution and Coil span factors – Predetermination of regulation by Synchronous Impedance Method – OC and SC tests.

UNIT - V

Special Motors & Electrical Instruments : Principle of operation - Shaded pole motors – Capacitor motors, AC servomotor, AC tachometers, Synchros, Stepper Motors – Characteristics, Basic Principles of indicating instruments – Moving Coil and Moving iron Instruments (Ammeters and Voltmeters).

TEXT BOOKS:

- 1. Introduction to Electrical Engineering M.S Naidu and S. Kamakshaiah, TMH Publ.
- 2. Basic Electrical Engineering T.K. Nagasarkar and M. S. Sukhija, Oxford University Press, 2005

REFERENCES:

- 1. Principles of Electrical Engineering V.K Mehta, S. Chand Publications.
- 2. Theory and Problems of basic electrical engineering I.J. Nagarath and D.P Kothari, PHI Publications
- 3. Essentials of Electrical and Computer Engineering David V. Kerns, JR. J. David Irwin

EC304ES: SIGNALS AND STOCHASTIC PROCESS

B.Tech. II Year I Sem.

L T P C 3 1 0 3

Course Objectives:

- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- This gives concepts of Signals and Systems and its analysis using different transform techniques.
- This gives basic understanding of random process which is essential for random signals and systems encountered in Communications and Signal Processing areas.

Course Outcomes: Upon completing his course, the student will be able to

- Represent any arbitrary analog or Digital time domain signal in frequency domain.
- Understand the importance of sampling, sampling theorem and its effects.
- Understand the characteristics of linear time invariant systems.
- Determine the conditions for distortion less transmission through a system.
- Understand the concepts of Random Process and its Characteristics.
- Understand the response of linear time Invariant system for a Random Processes.

UNIT - I

Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant (LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI system, Filter characteristics of Linear Systems, Distortion less transmission through a system, Signal bandwidth, System bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and Rise time. Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution, Convolution property of Fourier Transforms

UNIT – II

Fourier series, Transforms, and Sampling: Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function.

Sampling: Sampling theorem – Graphical and analytical proof for Band Limited Signals, Reconstruction of signal from its samples, Effect of under sampling – Aliasing.

UNIT – III

Laplace Transforms and Z–Transforms: Laplace Transforms: Review of Laplace Transforms (L.T), Partial fraction expansion, Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Constraints on ROC for various classes of signals, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.

Z–Transforms: Fundamental difference between Continuous and Discrete time signals, Discrete time signal representation using Complex exponential and Sinusoidal components, Periodicity of Discrete time signal using complex exponential signal, Concept of Z-Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

UNIT – IV

Random Processes – Temporal Characteristics: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, (N-Order) and Strict-Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and Its Properties, Cross-Correlation Function and Its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process. Random Signal, Mean and Mean-squared Value of System Response, autocorrelation Function of Response, Cross-Correlation Functions of Input and Output.

UNIT- V:

Random Processes – Spectral Characteristics: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function. Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectrums of Input and Output.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi , 2013, BSP.
- 2. Signal and systems principles and applications, shaila dinakar Apten, Cambridez university press, 2016.
- Probability, Random Variables & Random Signal Principles Peyton Z. Peebles, MC GRAW HILL EDUCATION, 4th Edition, 2001

REFERENCE BOOKS:

- 1. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, 2 Ed.,
- 2. Signals and Signals Iyer and K. Satya Prasad, Cengage Learning

EC305ES: NETWORK ANALYSIS

B.Tech. II Year I Sem.

L T P C 3 1 0 3

Pre-requisite: Basic Electrical & Electronics Engineering

Course Objectives: Objectives of this course are

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states in RLC circuits.
- To know the basic Laplace transforms techniques in periods waveforms.
- To understand the two port network parameters.
- To understand the properties of LC networks and filters.

Course Outcomes: After completion of this course student:

- Gains the knowledge on Basic network elements.
- Learns and analyze the RLC circuits' behavior in detail.
- Analyze the performance of periodic waveforms.
- Learns and gain the knowledge in characteristics of two port network parameters (Z, Y, ABCD, h & g).
- To analyze the filter design concepts in real world applications.

UNIT - I

Review of R, L,C, RC, RL, RLC circuits, Network Topology, Terminology, Basic cutest and tie set matrices for planar networks, Illustrative Problems, Magnetic Circuits, Self and Mutual inductances, dot convention, impedance, reactance concept, Impedance transformation and coupled circuits, co-efficient of coupling, equivalent T for Magnetically coupled circuits, Ideal Transformer.

UNIT - II

Steady state and transient analysis of RC, RL and RLC Circuits, Circuits with switches, step response, 2nd order series and parallel RLC Circuits, Root locus, damping factor, over damped, under damped, critically damped cases, quality factor and bandwidth for series and parallel resonance, resonance curves

UNIT - III

Network Analysis using Laplace transform techniques, step, impulse and exponential excitation, response due to periodic excitation, RMS and average value of periodic waveforms.

UNIT - IV

Two port network parameters, Z, Y, ABCD, h and g parameters, Characteristic impedance, Image transfer constant, image and iterative impedance, network function, driving point and transfer functions – using transformed (S) variables, Poles and Zeros.

UNIT - V

Standard T, π , L Sections, Characteristic impedance, image transfer constants, Design of Attenuators, impedance matching network, T and π Conversion, LC Networks and Filters: Properties of LC Networks, Foster's Reactance theorem, design of constant K, LP, HP and BP Filters, Composite filter design.

TEXT BOOKS

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Networks, Lines and Fields JD Ryder, PHI, 2nd Edition, 1999.

REFERENCES

- 1. Engineering Circuit Analysis William Hayt and Jack E Kemmerly, MGH, 5th Edition, 1993.
- 2. Electric Circuits J. Edminister and M.Nahvi Schaum's Outlines, MCGRAW HILL EDUCATION, 1999.
- 3. Network Theory Sudarshan and Shyam Mohan, Mc Graw Hill Education.

EC306ES: ELECTRONIC DEVICES AND CIRCUITS LAB

B.Tech. II Year I Sem.

L T P C 0 0 3 2

Course Objectives

- To identify various components and testing of active devices.
- To study and operation of millimeters, function generators ,regulated power supplies and CRO To know the characteristics of various active devices.
- To study frequency response amplifier.

Course Outcomes:

- After Completion of the course the student is able to Apply various devices to real time problems.
- Compute frequency response of various amplifiers.

Part A: (Only for viva-voce Examination)

ELECTRONIC WORKSHOP PRACTICE (in 3 lab sessions):

- 1. Identification, Specification, testing of R,L,C components (color codes), Potentiometers (SPDT, DPDT, and DIP), Coils, Gang Condensers, Relays, Bread Board, PCB's
- 2. Identification, Specification, testing of Active devices: Diodes, BJT, Low power JFET's, MOSFET's, Power Transistors, LED's, LCD's, SCR, UJT.
- 3. Study and operation of:
 - i. Multimeters (Analog and Digital)
 - ii. Function Generator
 - iii. Regulated Power Supplies
 - iv. CRO

Part B: (For Laboratory Examination – Minimum of 12 experiments)

- 1. Forward and Reverse Bias V-I characteristics of PN junction Diode.
- 2. Zener diode V-I characteristics and Zener diode as voltage regulator.
- 3. Half Wave rectifier, with and without filters
- 4. Full wave rectifier with and without filters.
- 5. Input and output Characteristics of a BJT in CE configuration and calculation of hparameters.
- 6. Input and output Characteristics of a BJT in CB configuration and calculation of hparameters.
- 7. FET characteristics in CS configuration.
- 8. Design of self bias circuit
- 9. Frequency response of CE Amplifier.
- 10. Frequency response of CC Amplifier.
- 11. Frequency response of CS FET Amplifier.
- 12. SCR characteristics.
- 13. UJT characteristics.

PART C: Equipment required for Laboratory:

- 1. Regulated Power supplies (RPS) : 0-30 V
- 2. CRO's : 0-20 MHz.
- 3. Function Generators : 0-1 MHz.
- 4. Multimeters
- 5. Decade Resistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital) : 0-20 µA, 0-50µA, 0-100µA, 0-200µA,10 mA.
- 8. Voltmeters (Analog or Digital) : 0-50V, 0-100V, 0-250V
- 9. Electronic Components: Resistors, Capacitors, BJTs, LCDs, SCRs, UJTs, FETs, LEDs, MOSFETs, Diodes-Ge & Si type, Transistors NPN, PNP type.

EC307ES: BASIC SIMULATION LAB

B.Tech. II Year I Sem.

L T P C 0 0 3 2

Note:

- All the experiments are to be simulated using MATLAB or equivalent software
- Minimum of 15 experiments are to be completed

List of Experiments:

- 1. Basic Operations on Matrices.
- 2. Generation of Various Signals and Sequences (Periodic and Aperiodic), such as Unit Impulse, Unit Step, Square, Saw tooth, Triangular, Sinusoidal, Ramp, Sinc.
- 3. Operations on Signals and Sequences such as Addition, Multiplication, Scaling, Shifting, Folding, Computation of Energy and Average Power.
- 4. Finding the Even and Odd parts of Signal/Sequence and Real and Imaginary parts of Signal.
- 5. Convolution for Signals and sequences.
- 6. Auto Correlation and Cross Correlation for Signals and Sequences.
- 7. Verification of Linearity and Time Invariance Properties of a given Continuous/Discrete System.
- 8. Computation of Unit sample, Unit step and Sinusoidal responses of the given LTI system and verifying its physical realiazability and stability properties.
- 9. Gibbs Phenomenon Simulation.
- 10. Finding the Fourier Transform of a given signal and plotting its magnitude and phase spectrum.
- 11. Waveform Synthesis using Laplace Transform.
- 12. Locating the Zeros and Poles and plotting the Pole-Zero maps in S-plane and Z-Plane for the given transfer function.
- 13. Generation of Gaussian noise (Real and Complex), Computation of its mean, M.S. Value and its Skew, Kurtosis, and PSD, Probability Distribution Function.
- 14. Sampling Theorem Verification.
- 15. Removal of noise by Autocorrelation / Cross correlation.
- 16. Extraction of Periodic Signal masked by noise using Correlation.
- 17. Verification of Weiner-Khinchine Relations.
- 18. Checking a Random Process for Stationarity in Wide sense.

EC308ES: BASIC ELECTRICAL ENGINEERING LAB

B.Tech. II Year I Sem.

L T P C 0 0 3 2

Note: Minimum 6 experiments from each part are to be conducted

<u>PART – A</u>

- 1. Verification of KVL and KCL.
- 2. Serial and Parallel Resonance Timing, Resonant frequency, Bandwidth and Q-factor determination for RLC network.
- 3. Time response of first order RC/RL network for periodic non-sinusoidal inputs time constant and steady state error determination.
- 4. Two port network parameters Z-Y Parameters, chain matrix and analytical verification.
- 5. Two post network parameters -ABCD and h parameters
- 6. Verification of Superposition and Reciprocity theorems.
- 7. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
- 8. Experimental determination of Thevenin's and Norton's equivalent circuits and verification by direct test.

<u> PART – B</u>

- 1. Magnetization characteristics of D.C. Shunt generator. Determination of critical field resistance.
- 2. Swinburne's Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
- 3. Brake test on DC shunt motor. Determination of performance characteristics.
- 4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
- 5. Brake test on 3-phase Induction motor (performance characteristics).
- 6. Regulation of alternator by synchronous impedance method.
- 7. Load test on single phase transform

MC300ES: ENVIRONMENTAL SCIENCE AND TECHNOLOGY

B.Tech. II Year I Sem.

L T P C 3 0 0 0

Course Objectives:

- 1. Understanding the importance of ecological balance for sustainable development.
- 2. Understanding the impacts of developmental activities and mitigation measures.
- 3. Understanding the environmental policies and regulations

Course Outcomes:

1. Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT-I

Ecosystems: Definition, Scope, and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT-II

Natural Resources: Classification of Resources: Living and Non-Living resources, water resources: use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT-III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT-IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, **Air Pollution:** Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. **Water pollution:** Sources and types of pollution, drinking water quality standards. **Soil Pollution:** Sources and types, Impacts of modern agriculture, degradation of soil. **Noise Pollution:** Sources and Health hazards, standards, **Solid waste:** Municipal Solid Waste management, composition and characteristics of e-Waste and its management. **Pollution control technologies:** Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems and Global Efforts:** Climate change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol.

UNIT-V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1 Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2 Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.

EC401ES: SWITCHING THEORY AND LOGIC DESIGN

B.Tech. II Year II Sem.	L	Т	Р	С
	3	1	0	3

Course Objectives:

This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

Course Outcomes: Upon completion of the course, students should possess the following skills:

- Be able to manipulate numeric information in different forms, e.g. different bases, signed integers, various codes such as ASCII, Gray and BCD.
- Be able to manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Be able to design and analyze small combinational circuits and to use standard combinational functions/building blocks to build larger more complex circuits.
- Be able to design and analyze small sequential circuits and devices and to use standard sequential functions/building blocks to build larger more complex circuits.

UNIT – I

Number System and Boolean algebra And Switching Functions: Review of number systems, Complements of Numbers, Codes- Binary Codes, Binary Coded Decimal Code and its Properties, Unit Distance Codes, Error Detecting and Correcting Codes.

Boolean Algebra: Basic Theorems and Properties, Switching Functions, Canonical and Standard Form, Algebraic Simplification of Digital Logic Gates, Properties of XOR Gates, Universal Gates, Multilevel NAND/NOR realizations.

UNIT - II

Minimization and Design of Combinational Circuits: Introduction, The Minimization of switching function using theorem, The Karnaugh Map Method-Up to Five Variable Maps, Don't Care Map Entries, Tabular Method, Design of Combinational Logic: Adders, Subtractors, comparators, Multiplexers, Demultiplexers, Decoders, Encoders and Code converters, Hazards and Hazard Free Relations.

UNIT - III

Sequential Machines Fundamentals and Applications: Introduction: Basic Architectural Distinctions between Combinational and Sequential circuits, The Binary Cell, Fundamentals of Sequential Machine Operation, Latches, Flip Flops: SR, JK, Race Around Condition in JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Design of a Clocked Flip-Flop, Timing and Triggering Consideration, Clock Skew, Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers, Data Transmission in Shift Registers, Operation of Shift Registers, Shift Register Configuration, Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation Of Asynchronous And Synchronous Counters.

UNIT - IV

Sequential Circuits - I: Introduction, State Diagram, Analysis of Synchronous Sequential Circuits, Approaches to the Design of Synchronous Sequential Finite State Machines, Synthesis of Synchronous Sequential Circuits, Serial Binary Adder, Sequence Detector, Parity-bit Generator, Design of Asynchronous Counters, Design of Synchronous Modulo N – Counters.

UNIT - V

Sequential Circuits - II: Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques, and Merger chart methods-concept of minimal cover table.

TEXT BOOKS:

- 1. Switching and Finite Automata Theory- Zvi Kohavi & Niraj K. Jha, 3rdEdition, Cambridge.
- 2. Digital Design- Morris Mano, 5rd Edition, Pearson.

REFERENCE BOOKS:

- 1. Modern Digital electronics RP Jain 4th Edition, McGraw Hill
- 2. Switching Theory and Logic Design A Anand Kumar, 3rd Edition, PHI, 2013.

EC402ES: PULSE AND DIGITAL CIRCUITS

B.Tech. II Year II Sem.

L T P C 4 0 0 4

Course Objectives:

- To explain the complete response of R-C and R-L-C transient circuits.
- To explain clippers, clampers, switching characteristics of transistors and sampling gates.
- To construct various multivibrators using transistors, design of sweep circuits and sampling gates.
- To discuss and realize logic gates using diodes and transistors.

Course Outcomes: At the end of the course, the student will be able to:

- Understand the applications of diode as integrator, differentiator, clippers, clampler circuits.
- Learn various switching devices such as diode, transistor, SCR. Difference between logic gates and sampling gates
- Design multivibrators for various applications, synchronization techniques and sweep circuits.
- Realizing logic gates using diodes and transistors.
- Understanding of time and frequency domain aspects.
- Importance of clock pulse and its generating techniques.

UNIT - I

Linear Wave Shaping: High pass and low pass RC circuits and their response for Sinusoidal, Step, Pulse, Square, & Ramp inputs, High pass RC network as Differentiator, Low pass RC circuit as an Integrator, Attenuators and its application as a CRO Probe, RL and RLC Circuits and their response for Step Input, Ringing Circuit.

UNIT - II

Non-Linear Wave Shaping: Diode clippers, Transistor clippers, Clipping at two independent levels, Comparators, Applications of Voltage comparators. Clamping Operation, Clamping circuit taking Source and Diode resistances into account, Clamping Circuit Theorem, Practical Clamping Circuits, Effect of Diode Characteristics on Clamping Voltage, Synchronized Clamping.

UNIT - III

Switching Characteristics of Devices: Diode as a Switch, Piecewise Linear Diode Characteristics, Diode Switching times, Transistor as a Switch, Break down voltages, Transistor in Saturation, Temperature variation of Saturation Parameters, Transistor-switching times, Silicon-controlled-switch circuits.

UNIT – IV

Multivibrators: Analysis and Design of Bistable, Monostable, Astable Multivibrators and Schmitt trigger using Transistors.

Time Base Generators: General features of a Time base Signal, Methods of Generating Time Base Waveform, Transistor Miller Time Base generator, Transistor Bootstrap Time Base Generator, Transistor Current Time Base Generators, Methods of Linearity improvement.

UNIT - V

Sampling Gates: Basic operating principles of Sampling Gates, Unidirectional and Bidirectional Sampling Gates, Four Diode Sampling Gate, Reduction of pedestal in Gate Circuits

Realization of Logic Gates Using Diodes & Transistors: AND, OR and NOT Gates using Diodes and Transistors, DCTL, RTL, DTL, TTL and CML Logic Families and its Comparison.

TEXT BOOKS:

- 1. Millman's Pulse, Digital and Switching Waveforms –J. Millman, H. Taub and Mothiki S. Prakash Rao, 2 Ed., 2008, McGraw Hill.
- 2. Pulse, Switching and Digital Circuits David A. Bell, 5th edition 2015, OXFORD University Press

- 1. Pulse and Digital Circuits -Venkata Rao K, Rama Sudha K, Manmadha rao G, Pearson, 2010
- 2. Pulse and Digital Circuits A. Anand Kumar, 2005, PHI.

SM405ES: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. II Year II Sem.

L T P C 3 0 0 3

Course Objective: To learn the basic Business types, impact of the Economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT – I

Introduction to Business and Economics:

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply in Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT – II

Demand and Supply Analysis:

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting. **Supply Analysis:** Determinants of Supply, Supply Function & Law of Supply.

UNIT- III

Production, Cost, Market Structures & Pricing:

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, and Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, and Cost Volume Profit Analysis.

UNIT - IV

Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, and Preparation of Final Accounts.

UNIT - V

Financial Analysis through Ratios: Concept of Ratio Analysis, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios (simple problems). Introduction to Fund Flow and Cash Flow Analysis (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, International Book House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata McGraw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata McGraw Hill Education Pvt. Ltd. 2012.

REFERENCES:

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.`

EE404ES: CONTROL SYSTEMS

B.Tech. II Year II Sem.

Prerequisite: Ordinary Differential Equations & Laplace Transform, Mathematics I

Course objectives:

- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course outcomes: After completion of this course the student is able to

- Improve the system performance by selecting a suitable controller and/or a compensator for a specific application
- Apply various time domain and frequency domain techniques to assess the system performance
- Apply various control strategies to different applications (example: Power systems, electrical drives etc...)
- Test system Controllability and Observability using state space representation and applications of state space representation to various systems.

UNIT – I

Introduction: Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models – Differential equations - Impulse Response and transfer functions - Translational and Rotational mechanical systems.

Transfer Function Representation: Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples - Block diagram algebra – Representation by Signal flow graph - Reduction using mason's gain formula.

UNIT-II

Time Response Analysis: Standard test signals - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants – Effects of proportional derivative, proportional integral systems.

UNIT – III

Stability Analysis: The concept of stability - Routh stability criterion – qualitative stability and conditional stability.

Root Locus Technique: The root locus concept - construction of root loci-effects of adding poles and zeros to G(s) H(s) on the root loci.

Frequency Response Analysis: Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

UNIT - IV

Stability Analysis In Frequency Domain: Polar Plots, Nyquist Plots and applications of Nyquist criterion to find the stability - Effects of adding poles and zeros to G(s)H(s) on the shape of the Nyquist diagrams.

Classical Control Design Techniques: Compensation techniques – Lag, Lead, and Lead-Lag Controllers design in frequency Domain, PID Controllers.

UNIT – V

State Space Analysis of Continuous Systems: Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and its Properties.

TEXT BOOKS:

- "I. J. Nagrath and M. Gopal", "Control Systems Engineering", New Age International (P) Limited, Publishers, 5th edition, 2009
- 2. "B. C. Kuo", "Automatic Control Systems", John wiley and sons, 8th edition, 2003.

- 1. "N. K. Sinha", "Control Systems", New Age International (P) Limited Publishers, 3rd Edition, 1998.
- 2. "NISE", "Control Systems Engineering", John wiley, 6th Edition, 2011.
- "Katsuhiko Ogata", "Modern Control Engineering", Prentice Hall of India Pvt. Ltd., 3rd edition, 1998.

EC405ES: ANALOG COMMUNICATIONS

B.Tech. II Year II Sem.

L T P C 4 0 0 4

Course Objectives:

- To develop ability to analyze system requirements of analog communication systems.
- To understand the need for modulation
- To understand the generation, detection of various analog modulation techniques and also perform the mathematical analysis associated with these techniques.
- To acquire knowledge to analyze the noise performance of analog modulation techniques.
- To acquire theoretical knowledge of each block in AM and FM receivers.
- To understand the pulse modulation techniques.

Course Outcomes:

- Able to analyze and design various modulation and demodulation analog systems.
- Understand the characteristics of noise present in analog systems.
- Study of signal to Noise Ration (SNR) performance, of various Analog Communication systems.
- Analyze and design the various Pulse Modulation Systems.
- Understand the concepts of Multiplexing: Time Division Multiplexing (TDM) and Frequency Division Multiplexing (FDM).

UNIT - I

Amplitude Modulation: Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector, Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop.

UNIT - II

SSB Modulation: Introduction to Hilbert Transform, Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques, Applications of different AM Systems.

UNIT - III

Angle Modulation: Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Direct FM, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop, Comparison of FM and AM.

UNIT - IV

Noise: Resistive Noise Source (Thermal), Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figures, Average Noise Figure of cascaded networks, Narrow Band noise, Quadrature representation of narrow band noise, & its properties

Noise in Analog communication System, Noise in DSB and SSB System Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle Modulation System, Pre-emphasis and de-emphasis.

UNIT - V

Receivers: Radio Receiver - Receiver Types - Tuned radio frequency receiver, Super heterodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting.

PULSE MODULATION: Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation and demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division Multiplexing.

TEXTBOOKS:

- 1. Communication Systems by Simon Haykins John Wiley & Sons, 4th Edition.
- 2. Electronics & Communication System George Kennedy and Bernard Davis, McGraw Hill Education 2004.

REFERENCES:

- 1. Communication theory, thomas, 2 edition, McGraw-Hill Education
- 2. Communication Systems, 2E, R. P. Singh, S. D. Sapre, McGraw-Hill Education, 2008.
- 3. Analog and Digital Communication K. Sam Shanmugam, Willey, 2005
- 4. Electronics Communication Systems- Wayne Tomasi, 6th Edition, Person 2009

EC406ES: ANALOG COMMUNICATIONS LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 2

Note:

- Minimum 12 experiments should be conducted:
- Experiments are to be simulated first either using MATLAB, Comsim or any other simulation software tools and then testing to be done in hardware.

LIST OF EXPERIMENTS:

- 1. Amplitude modulation and demodulation.
- 2. DSB-SC Modulator & Detector
- 3. SSB-SC Modulator & Detector (Phase Shift Method)
- 4. Frequency modulation and demodulation.
- 5. Study of spectrum analyzer and analysis of AM and FM Signals
- 6. Pre-emphasis & de-emphasis.
- 7. Time Division Multiplexing & De multiplexing
- 8. Frequency Division Multiplexing & De multiplexing
- 9. Verification of Sampling Theorem
- 10. Pulse Amplitude Modulation & Demodulation
- 11. Pulse Width Modulation & Demodulation
- 12. Pulse Position Modulation & Demodulation
- 13. Frequency Synthesizer.
- 14. AGC Characteristics.
- 15. PLL as FM Demodulator

EC407ES: PULSE AND DIGITAL CIRCUITS LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 2

Note:

Minimum Twelve experiments to be conducted:

- 1. Linear wave Shaping
 - a. RC Low Pass Circuit for different time constants
 - b. RC High Pass Circuit for different time constants
- 2. Non-linear wave shaping
 - a. Transfer characteristics and response of Clippers:
 - i) Positive and Negative Clippers
 - ii) Clipping at two independent levels
 - b. The steady state output waveform of clampers for a square wave input
 - i) Positive and Negative Clampers
 - ii) Clamping at different reference voltage
- 3. Comparison Operation of different types of Comparators
- 4. Switching characteristics of a transistor
- 5. Design a Bistable Multivibrator and draw its waveforms
- 6. Design an Astable Multivibrator and draw its waveforms
- 7. Design a Monostable Multivibrator and draw its waveforms
- 8. Response of Schmitt Trigger circuit for loop gain less than and greater than one
- 9. UJT relaxation oscillator
- 10. The output- voltage waveform of Boot strap sweep circuit
- 11. The output- voltage waveform of Miller sweep circuit
- 12. Pulse Synchronization of An Astable circuit
- 13. Response of a transistor Current sweep circuit
- 14. Sampling gates
 - a. Response of Unidirectional gate
 - b. Response of Bidirectional gate using transistors
- 15. Study of logic gates

EC408ES: ANALOG ELECTRONICS LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 2

Note:

- Minimum 12 experiments should be conducted:
- Experiments are to be simulated using Multisim or P-spice or Equivalent Simulation and then testing to be done in hardware.

LIST OF EXPERIMENTS:

- 1. Common Emitter Amplifier
- 2. Common Base Amplifier
- 3. Common Source amplifier
- 4. Two Stage RC Coupled Amplifier
- 5. Current Shunt Feedback Amplifier
- 6. Voltage Series Feedback Amplifier
- 7. Cascode Amplifier
- 8. Wien Bridge Oscillator using Transistors
- 9. RC Phase Shift Oscillator using Transistors
- 10. Class A Power Amplifier (Transformer less)
- 11. Class B Complementary Symmetry Amplifier
- 12. Hartley Oscillator
- 13. Colpitt's Oscillator
- 14. Single Tuned Voltage Amplifier

MC400HS: GENDER SENSITIZATION LAB

B.Tech. II Year II Sem.

L T P C 0 0 3 0

Course Objectives:

- To develop students' sensibility with regard to issues of gender in contemporary India.
- To provide a critical perspective on the socialization of men and women.
- To introduce students to information about some key biological aspects of genders.
- To expose the students to debates on the politics and economics of work.
- To help students reflect critically on gender violence.
- To expose students to more egalitarian interactions between men and women.

Course Outcomes:

- Students will have developed a better understanding of important issues related to gender in contemporary India.
- Students will be sensitized to basic dimensions of the biological, sociological, psychological and legal aspects of gender. This will be achieved through discussion of materials derived from research, facts, everyday life, literature, and film.
- Students will attain a finer grasp of how gender discrimination works in our society and how to counter it.
- Students will acquire insight into the gendered division of labour and its relation to politics and economics.
- Men and women students and professionals will be better equipped to work and live together as equals.
- Students will develop a sense of appreciation of women in all walks of life.
- Through providing accounts of studies and movements as well as the new laws that provide protection and relief to women, the textbook will empower students to understand and respond to gender violence.

UNIT - I UNDERSTANDING GENDER

Gender: Why Should We Study It? (*Towards a World of Equals*: Unit -1)

Socialization: Making Women, Making Men (Towards a World of Equals: Unit -2)

Introduction. Preparing for Womanhood. Growing up Male. First lessons in Caste. Different Masculinities.

UNIT - II

GENDER AND BIOLOGY:

Missing Women: Sex Selection and Its Consequences (*Towards a World of Equals*: Unit -4) Declining Sex Ratio. Demographic Consequences.

Gender Spectrum: Beyond the Binary (Towards a World of Equals: Unit -10)

Two or Many? Struggles with Discrimination.

UNIT - III GENDER AND LABOUR

Housework: the Invisible Labour (Towards a World of Equals: Unit -3)

"My Mother doesn't Work." "Share the Load."

Women's Work: Its Politics and Economics (Towards a World of Equals: Unit -7)

Fact and Fiction. Unrecognized and Unaccounted work. Additional Reading: Wages and Conditions of Work.

UNIT-IV

ISSUES OF VIOLENCE

Sexual Harassment: Say No! (Towards a World of Equals: Unit -6)

Sexual Harassment, not Eve-teasing- Coping with Everyday Harassment- Further Reading: "Chupulu".

Domestic Violence: Speaking Out (Towards a World of Equals: Unit -8)

Is Home a Safe Place? -When Women Unite [Film]. Rebuilding Lives. Additional Reading: New Forums for Justice.

Thinking about Sexual Violence (Towards a World of Equals: Unit -11)

Blaming the Victim-"I Fought for my Life...." - Additional Reading: The Caste Face of Violence.

UNIT - V

GENDER: CO - EXISTENCE

Just Relationships: Being Together as Equals (*Towards a World of Equals*: Unit -12) Mary Kom and Onler. Love and Acid just do not Mix. Love Letters. Mothers and Fathers. Additional Reading: Rosa Parks-The Brave Heart.

ТЕХТВООК

All the five Units in the Textbook, "*Towards a World of Equals: A Bilingual Textbook on Gender*" written by A. Suneetha, Uma Bhrugubanda, Duggirala Vasanta, Rama Melkote, Vasudha Nagaraj, Asma Rasheed, Gogu Shyamala, Deepa Sreenivas and Susie Tharu and published by **Telugu Akademi, Hyderabad**, Telangana State in the year **2015**.

Note: Since it is an Interdisciplinary Course, Resource Persons can be drawn from the fields of English Literature or Sociology or Political Science or any other qualified faculty who has expertise in this field from engineering departments.

- 1. Menon, Nivedita. Seeing like a Feminist. New Delhi: Zubaan-Penguin Books, 2012
- 2. Abdulali Sohaila. "*I Fought For My Life…and Won*." Available online at: <u>http://www.thealternative.in/lifestyle/i-fought-for-my-lifeand-won-sohaila-abdulal/</u>

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING III YEAR COURSE STRUCTURE & SYLLABUS (R16)

Applicable From 2016-17 Admitted Batch

III YEAR I SEMESTER

S. No	Course Code	Course Title	L	Т	Р	Credits
1	EC501PC	Electromagnetic Theory and Transmission Lines	4	1	0	4
2	EC502PC	Linear and Digital IC Applications	4	0	0	4
3	EC503PC	Digital Communications	4	1	0	4
4	SM504MS	Fundamentals of Management	3	0	0	3
5		Open Elective – I	3	0	0	3
6	EC505PC	Linear IC Applications Lab	0	0	3	2
7	EC506PC	Digital IC Applications Lab	0	0	3	2
8	EC507PC	Digital Communications Lab	0	0	3	2
9	*MC500HS	Professional Ethics	3	0	0	0
		Total Credits	21	2	9	24

III YEAR II SEMESTER

S. No	Course Code	Course Title	L	Т	Р	Credits
1		Open Elective-II	3	0	0	3
2		Professional Elective-I	3	0	0	3
3	EC601PC	Antennas and Wave Propagation	4	0	0	4
4	EC602PC	Microprocessors and Microcontrollers	4	0	0	4
5	EC603PC	Digital Signal Processing	4	0	0	4
6	EC604PC	Digital Signal Processing Lab	0	0	3	2
7	EC605PC	Microprocessors and Microcontrollers Lab	0	0	3	2
8	EN606HS	Advanced English Communication Skills Lab	0	0	3	2
		Total Credits	18	0	9	24

During Summer Vacation between III and IV Years: Industry Oriented Mini Project

Professional Elective – I

EC611PE	Computer organization and operating system
EC612PE	Digital Image Processing
EC613PE	Spread Spectrum Communications
EC614PE	Digital system Design

*Open Elective subjects' syllabus is provided in a separate document.

***Open Elective** – Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

ELECTROMAGNETIC THEORY AND TRANSMISSION LINES

B.Tech. III Year I Sem.	L	Т	Р	С
Course Code: EC501PC	4	1	0	4

Course Objectives:

This is a structured foundation course, dealing with concepts, formulations and applications of Electromagnetic Theory and Transmission Lines, and is the basic primer for all electronic communication engineering subjects. The main objectives of the course are

- To learn the Basic Laws, Concepts and proofs related to Electrostatic Fields and Magnetostatic Fields, and apply them to solve physics and engineering problems.
- To distinguish between static and time-varying fields, and understand the significance and utility of Maxwell's Equations and Boundary Conditions, and gain ability to provide solutions to communication engineering problems.
- To analyze the characteristics of Uniform Plane Waves (UPW), determine their propagation parameters and estimate the same for dielectric and dissipative media.
- To conceptually understand the UPW Polarization features and Poynting Theorem, and apply them for practical problems.
- To determine the basic Transmission Line Equations and telephone line parameters and estimate the distortions present.
- To understand the concepts of RF Lines and their characteristics, Smith Chart and its applications, acquire knowledge to configure circuit elements, QWTs and HWTs, and to apply the same for practical problems.

Course Outcomes : Having gone through this foundation course, the students would be able to

- Distinguish between the static and time-varying fields, establish the corresponding sets of Maxwell's Equations and Boundary Conditions, and use them for solving engineering problems.
- Analyze the Wave Equations for good conductors and good dielectrics, and evaluate the UPW Characteristics for several practical media of interest.
- Establish the proof and estimate the polarization features, reflection and transmission coefficients for UPW propagation, distinguish between Brewster and Critical Angles, and acquire knowledge of their applications.
- Determine the Transmission Line parameters for different lines, characterize the distortions and estimate the characteristics for different lines.
- Analyze the RF Line features and configure them as SC, OC Lines, QWTs and HWTs, and design the same for effective impedance transformation.
- Study the Smith Chart profile and stub matching features, and gain ability to practically use the same for solving practical problems.

UNIT – I

Electrostatics: Coulomb's Law, Electric Field Intensity – Fields due to Different Charge Distributions, Electric Flux Density, Gauss Law and Applications, Electric Potential, Relations Between E and V, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems. Convection and Conduction Currents, Dielectric Constant, Isotropic and Homogeneous Dielectrics, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations; Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

UNIT – II

Magnetostatics: Biot-Savart's Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Illustrative Problems.

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer EMF, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements, Conditions at a Boundary Surface : Dielectric-Dielectric and Dielectric-Conductor Interfaces, Illustrative Problems .

UNIT – III

EM Wave Characteristics - I: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossless and Conducting Media, Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics, Polarization, Illustrative Problems.

EM Wave Characteristics – II: Reflection and Refraction of Plane Waves – Normal and Oblique Incidences for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance, Poynting Vector and Poynting Theorem – Applications, Illustrative Problems.

UNIT – IV

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Losslessness/Low Loss Characterization, Distortion – Condition for Distortionlessness and Minimum Attenuation, Loading - Types of Loading, Illustrative Problems.

UNIT – V

Transmission Lines – **II:** Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. UHF Lines as Circuit Elements; $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations, Significance of Z_{min} and Z_{max} , Smith Chart – Configuration and Applications, Single Matching, Illustrative Problems.

TEXT BOOKS:

- 1. Principles of Electromagnetics Matthew N.O. sadiku and S.V. Kulkarni, 6th Ed., Oxford University Press, Aisan Edition, 2015.
- Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, 2nd Ed. 2000, PHI.
- 3. Transmission Lines and Networks Umesh Sinha, Satya Prakashan, 2001, (Tech. India Publications), New Delhi.

- Engineering Electromagnetics Nathan Ida, 2nd Ed., 2005, Springer (India) Pvt. Ltd., New Delhi.
- 2. Networks, Lines and Fields John D. Ryder, 2nd Ed., 1999, PHI.
- 3. Engineering Electromagnetics William H. Hayt Jr. and John A. Buck, 7th Ed., 2006, MC GRAW HILL EDUCATION.

LINEAR AND DIGITAL IC APPLICATIONS

B.Tech. III Year I Sem. Course Code: EC502PC

L	Т	Р	С
4	0	0	4

Course Objectives:

- 1. The main objectives of the course are:
- 2. To introduce the basic building blocks of linear integrated circuits.
- 3. To teach the linear and non linear applications of operational amplifiers.
- 4. To introduce the theory and applications of analog multipliers and PLL.
- 5. To teach the theory of ADC and DAC.
- 6. To introduce the concepts of waveform generation and introduce some special function ICs.
- 7. To understand and implement the working of basic digital circuits

Course Outcomes: On completion of this course, the students will have:

- 1. A thorough understanding of operational amplifiers with linear integrated circuits.
- 2. Understanding of the different families of digital integrated circuits and their characteristics.
- 3. Also students will be able to design circuits using operational amplifiers for various applications.

UNIT - I

Operational Amplifier: Ideal and Practical Op-Amp, Op-Amp Characteristics, DC and AC Characteristics, Features of 741 Op-Amp, Modes of Operation - Inverting, Non-Inverting, Differential, Instrumentation Amplifier, AC Amplifier, Differentiators and Integrators, Comparators, Schmitt Trigger, Introduction to Voltage Regulators, Features of 723 Regulator, Three Terminal Voltage Regulators.

UNIT - II

Op-Amp, IC-555 & IC 565 Applications: Introduction to Active Filters, Characteristics of Band pass, Band reject and All Pass Filters, Analysis of 1st order LPF & HPF Butterworth Filters, Waveform Generators – Triangular, Saw tooth, Square Wave, IC555 Timer - Functional Diagram, Monostable, and Astable Operations, Applications, IC565 PLL - Block Schematic, Description of Individual Blocks, Applications.

UNIT - III

Data Converters: Introduction, Basic DAC techniques, Different types of DACs-Weighted resistor DAC, R-2R ladder DAC, Inverted R-2R DAC, Different Types of ADCs - Parallel Comparator Type ADC, Counter Type ADC, Successive Approximation ADC and Dual Slope ADC, DAC and ADC Specifications.

UNIT - IV

Digital Integrated Circuits: Classification of Integrated Circuits, Comparison of Various Logic Families Combinational Logic ICs – Specifications and Applications of TTL-74XX & Code Converters, Decoders, Demultiplexers, LED & LCD Decoders with Drivers, Encoders, Priority Encoders, Multiplexers, Demultiplexers, Priority Generators/Checkers, Parallel Binary Adder/Subtractor, Magnitude Comparators.

UNIT - V

Sequential Logic IC's and Memories: Familiarity with commonly available 74XX & CMOS 40XX Series ICs – All Types of Flip-flops, Synchronous Counters, Decade Counters, Shift Registers.

Memories - ROM Architecture, Types of ROMS & Applications, RAM Architecture, Static & Dynamic RAMs.

TEXT BOOKS:

- 1. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 2003.
- 2. Digital Fundamentals Floyd and Jain, Pearson Education, 8th Edition, 2005.

- Linear Integrated Circuits –D. Roy Chowdhury, New Age International (p) Ltd, 2nd Ed., 2003.
- 2. Op Amps and Linear Integrated Circuits-Concepts and Applications James M. Fiore, Cengage Learning/ Jaico, 2009.
- 3. Operational Amplifiers with Linear Integrated Circuits by K. Lal Kishore Pearson, 2009.
- 4. Linear Integrated Circuits and Applications Salivahanan, MC GRAW HILL EDUCATION.
- 5. Modern Digital Electronics RP Jain 4/e MC GRAW HILL EDUCATION, 2010.

DIGITAL COMMUNICATIONS

B.Tech. III Year I Sem. Course Code: EC503PC

L	Т	Р	С
4	1	0	4

Course Objectives:

- To understand the functional block diagram of Digital communication system.
- To understand the need for source and channel coding.
- To study various source and channel coding techniques.
- To understand a mathematical model of digital communication system for bit error rate analysis of different digital communication systems.

Course Outcomes: At the end of the course, the student will be able to:

- Understand basic components of Digital Communication Systems.
- Design optimum receiver for Digital Modulation techniques.
- Analyze the error performance of Digital Modulation Techniques.
- Understand the redundancy present in Digital Communication by using various source coding techniques.
- Know about different error detecting and error correction codes like block codes, cyclic codes and convolution codes.

UNIT - I

Elements of Digital Communication Systems: Model of Digital Communication Systems, Digital Representation of Analog Signal, Certain Issues in Digital Transmission, Advantages of Digital Communication Systems, Sampling Theorem, Types of Sampling – Impulse Sampling , Natural Sampling , Flat – Top Sampling. Introduction to Baseband Sampling.

Waveform Coding Techniques: PCM Generation and Reconstruction, Quantization Noise, Non Uniform Quantization and Companding, DPCM, Adaptive DPCM, DM and Adaptive DM, Noise in PCM and DM.

UNIT - II

Information theory: Information and Entropy, Conditional Entropy and Redundancy, Shannon-Fano Coding Mutual information, Information Loss due to Noise, Source coding-Huffman Code, Variable Length Coding, Lempel-ziv coding, Source coding to increase average information per bit, Lossy Source coding, Bandwidth-S/N Trade off, Hartley Shannon Law.

Error Control Codes

Linear Block Codes: Matrix Description of Linear Block Codes, Error Detection and Error Correction Capabilities of Linear Block Codes. Cyclic Codes: Algebraic Structure, Encoding, Syndrome Calculation, Decoding. **Convolution Codes:** Encoding, Decoding,

UNIT - III

Baseband Pulse Transmission: Introduction, Matched Filter, Error Rate Due to Noise, intersymbol interference Nyquist's criterion for Distortionless Baseband Binary Transmission, Correlative -Level Coding Baseband M-Array PAM Transmission PAM Transmission, Digital subscriber Lines, Optimal Liner Receiver, Adaptive Equalization, Eye patterns.

Digital pass band transmission: pass band transmission model, Gram-Schmidt orthogonalization procedure, Geometric interpretation of signals Coherent detection of signals in noise, probability of error, Correlation receiver.

UNIT - IV

Digital Modulation Techniques: Introduction, ASK, ASK Modulator, Coherent ASK Detector, Non-Coherent ASK Detector, FSK, Bandwidth and Frequency Spectrum of FSK, Non Coherent FSK Detector, Coherent FSK Detector, FSK Detection using PLL, BPSK, Coherent PSK Detection, QPSK, 8-PSK, 16-PSK Differential PSK, QAM .

UNIT - V

Spread Spectrum Modulation: Use of Spread Spectrum, Direct Sequence Spread (DSSS), and Code Division Multiple Access, Ranging using DSSS, Frequency Hopping Spread Spectrum, PN - Sequence: Generation and characteristics, Synchronization in Spread Spectrum Systems.

TEXT BOOKS:

- 1. Communications system, S. Haykin, Wiley, 4 edition 2009.
- 2. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 2005.

REFERENCES:

- 1. Principles of Communication Systems Herbert Taub, Donald L Schiling, Goutam Saha, 3rd Edition, McGraw-Hill, 2008
- 2. Electronic communication systems, Wayne Tomasi, 5 edition, Pearson
- 3. Communication Systems: Analog and Digital, R. P. Singh, S. Sapre, McGraw-Hill Education, 2012
- Digital Communications John G. Proakis, Masoud Salehi 5th Edition, McGraw-Hill, 2008.

FUNDAMENTALS OF MANAGEMENT

B.Tech. III Year I Sem.	L	Т	Р	С
Course Code: SM504MS	3	0	0	3

Course Objective: To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills.

Course Outcome: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT - I

Introduction to Management: Definition, Nature and Scope, Functions, Managerial Roles, Levels of Management, Managerial Skills, Challenges of Management; Evolution of Management- Classical Approach- Scientific and Administrative Management; The Behavioral approach; The Quantitative approach; The Systems Approach; Contingency Approach, IT Approach.

UNIT - II

Planning and Decision Making: General Framework for Planning - Planning Process, Types of Plans, Management by Objectives; Development of Business Strategy. Decision making and Problem Solving - Programmed and Non Programmed Decisions, Steps in Problem Solving and Decision Making; Bounded Rationality and Influences on Decision Making; Group Problem Solving and Decision Making, Creativity and Innovation in Managerial Work.

UNIT - III

Organization and HRM: Principles of Organization: Organizational Design & Organizational Structures; Departmentalization, Delegation; Empowerment, Centralization, Decentralization, Recentralization; Organizational Culture; Organizational Climate and Organizational Change.

Human Resource Management & Business Strategy: Talent Management, Talent Management Models and Strategic Human Resource Planning; Recruitment and Selection; Training and Development; Performance Appraisal.

UNIT - IV

Leading and Motivation: Leadership, Power and Authority, Leadership Styles; Behavioral Leadership, Situational Leadership, Leadership Skills, Leader as Mentor and Coach, Leadership during adversity and Crisis; Handling Employee and Customer Complaints, Team Leadership.

Motivation - Types of Motivation; Relationship between Motivation, Performance and Engagement, Content Motivational Theories - Needs Hierarchy Theory, Two Factor Theory, Theory X and Theory Y.

UNIT - V

Controlling: Control, Types and Strategies for Control, Steps in Control Process, Budgetary and Non- Budgetary Controls. Characteristics of Effective Controls, Establishing control systems, Control frequency and Methods.

TEXT BOOKS:

- 1. Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013.
- 2. Fundamentals of Management, Stephen P. Robbins, Pearson Education, 2009.

REFERENCES:

- 1. Essentials of Management, Koontz Kleihrich, Tata McGraw Hill.
- 2. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012

LINEAR IC APPLICATIONS LAB

B.Tech. III Year I Sem. Course Code: EC505PC

L T P C 0 0 3 2

Note:

- To perform any twelve experiments
- Verify the functionality of the IC in the given application.

Design and Implementation of:

- 1. Inverting and Non-inverting Amplifiers using Op Amps.
- 2. Adder and Subtractor using Op Amp.
- 3. Comparators using Op Amp.
- 4. Integrator Circuit using IC 741.
- 5. Differentiator circuit using Op Amp.
- 6. Active Filter Applications LPF, HPF (first order)
- 7. IC 741 Waveform Generators Sine, Square wave and Triangular waves.
- 8. Mono-stable Multivibrator using IC 555.
- 9. Astable Multivibrator using IC 555.
- 10. Schmitt Trigger Circuits using IC 741.
- 11. IC 565 PLL Applications.
- 12. Voltage Regulator using IC 723.
- 13. Three Terminal Voltage Regulators -7805, 7809, 7912.

LTPC

0

0 3 2

DIGITAL IC APPLICATIONS LAB

B.Tech. III Year I Sem. Course Code: EC506PC

Note:

- To perform any twelve experiments
- Verify the functionality of the IC in the given application.

Design and Implementation of:

- 1. Design a 16 x 4 priority encoder using two 8 x 3 priority encoder.
- 2. Design a 16 bit comparator using 4 bit Comparators.
- 3. Design a model to 53 counter using two decade counters.
- 4. Design a 450 KHz clock using NAND / NOR gates.
- 5. Design a 4 bit pseudo random sequence generator using 4 bit ring counter.
- 6. Design a 16 x 1 multiplexer using 8 x 1 multiplexer.
- 7. Design a 16 bit Adder / Subtractor using 4 bit Adder / Subtractor IC's
- 8. Plot the transform Characteristics of 74H, LS, HS series IC's.
- 9. Design a 4 bit Gray to Binary and Binary to Gray Converter.
- 10. Design a two Digit 7 segment display unit using this display the Mod counter output of experiment 3.
- 11. Design an 8 bit parallel load and serial out shift register using two 4 bit shift register.
- 12. Design an 8 bit Serial in and serial out shift register using two 4 bit shift register.
- 13. Design a Ring counter and Twisted ring counter using a 4-bit shift register
- 14. Design a 4 digit hex counter using synchronous one digit hex counters.
- 15. Design a 4 digit hex counter using Asynchronous one digit hex counters.

DIGITAL COMMUNICATIONS LAB

B.Tech. III Year I Sem. Course Code: EC507PC

L T P C 0 0 3 2

Note:

- Perform any twelve experiments.
- Hardware Testing to be done

List of Experiments:

- 1. PCM Generation and Detection
- 2. Differential Pulse Code Modulation
- 3. Delta Modulation
- 4. Adaptive Delta modulation
- 5. Time Division Multiplexing of 2 Band Limited Signals
- 6. Frequency Shift Keying: Generation and Detection
- 7. Phase Shift Keying: Generation and Detection
- 8. Amplitude Shift Keying: Generation and Detection
- 9. Study of the spectral characteristics of PAM
- 10. Study of the spectral characteristics of PWM
- 11. Study of the spectral characteristics of QAM.
- 12. DPSK :Generation and Detection
- 13. QPSK : Generation and Detection
- 14. OFDM: Generation and Detection

PROFESSIONAL ETHICS

B.Tech. III Year I Sem.	\mathbf{L}	Т	Р	С
Course Code: MC500HS	3	0	0	0

Course Objective: To enable the students to imbibe and internalize the Values and Ethical Behaviour in the personal and Professional lives.

Course Outcome: The students will understand the importance of Values and Ethics in their personal lives and professional careers. The students will learn the rights and responsibilities as an employee, team member and a global citizen.

UNIT - I

Introduction to Professional Ethics: Basic Concepts, Governing Ethics, Personal & Professional Ethics, Ethical Dilemmas, Life Skills, Emotional Intelligence, Thoughts of Ethics, Value Education, Dimensions of Ethics, Profession and professionalism, Professional Associations, Professional Risks, Professional Accountabilities, Professional Success, Ethics and Profession.

UNIT - II

Basic Theories: Basic Ethical Principles, Moral Developments, Deontology, Utilitarianism, Virtue Theory, Rights Theory, Casuist Theory, Moral Absolution, Moral Rationalism, Moral Pluralism, Ethical Egoism, Feminist Consequentialism, Moral Issues, Moral Dilemmas, Moral Autonomy.

UNIT - III

Professional Practices in Engineering: Professions and Norms of Professional Conduct, Norms of Professional Conduct vs. Profession; Responsibilities, Obligations and Moral Values in Professional Ethics, Professional codes of ethics, the limits of predictability and responsibilities of the engineering profession.

Central Responsibilities of Engineers - The Centrality of Responsibilities of Professional Ethics; lessons from 1979 American Airlines DC-10 Crash and Kansas City Hyatt Regency Walk away Collapse.

UNIT - IV

Work Place Rights & Responsibilities, Ethics in changing domains of Research, Engineers and Managers; Organizational Complaint Procedure, difference of Professional Judgment within the Nuclear Regulatory Commission (NRC), the Hanford Nuclear Reservation.

Ethics in changing domains of research - The US government wide definition of research misconduct, research misconduct distinguished from mistakes and errors, recent history of attention to research misconduct, the emerging emphasis on understanding and fostering responsible conduct, responsible authorship, reviewing & editing.

UNIT - V

Global issues in Professional Ethics: Introduction – Current Scenario, Technology Globalization of MNCs, International Trade, World Summits, Issues, Business Ethics and Corporate Governance, Sustainable Development Ecosystem, Energy Concerns, Ozone Deflection, Pollution, Ethics in Manufacturing and Marketing, Media Ethics; War Ethics; Bio Ethics, Intellectual Property Rights.

TEXT BOOKS:

- 1. Professional Ethics: R. Subramanian, Oxford University Press, 2015.
- 2. Ethics in Engineering Practice & Research, Caroline Whitbeck, 2e, Cambridge University Press 2015.

REFERENCES

- 1. Engineering Ethics, Concepts Cases: Charles E Harris Jr., Michael S Pritchard, Michael J Rabins, 4e, Cengage learning, 2015.
- 2. Business Ethics concepts & Cases: Manuel G Velasquez, 6e, PHI, 2008.

COMPUTER ORGANIZATION AND OPERATING SYSTEMS (Professional Elective – I)

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC611PE	3	0	0	3

Course Objectives: The course objectives are

- To have a thorough understanding of the basic structure and operation of a digital computer.
- To discuss in detail the operation of the arithmetic unit including the algorithms & implementation of fixed-point and floating-point addition, subtraction, multiplication & division.
- To study the different ways of communicating with I/O devices and standard I/O interfaces.
- To study the hierarchical memory system including cache memories and virtual memory.
- To demonstrate the knowledge of functions of operating system memory management scheduling, file system and interface, distributed systems, security and dead locks.
- To implement a significant portion of an Operating System.

Course Outcomes: Upon completion of the course, students will have thorough knowledge about:

- Basic structure of a digital computer
- Arithmetic operations of binary number system
- The organization of the Control unit, Arithmetic and Logical unit, Memory unit and the I/O unit.
- Operating system functions, types, system calls.
- Memory management techniques and dead lock avoidance operating systems' file system implementation and its interface.

UNIT - I

Basic Structure of Computers: Computer Types, Functional UNIT, Basic OPERATIONAL Concepts, Bus Structures, Software, Performance, Multiprocessors and Multi Computers, Data Representation, Fixed Point Representation, Floating – Point Representation.

Register Transfer Language and Micro Operations: Register Transfer

Language, Register Transfer Bus and Memory Transfers, Arithmetic Micro Operations, Logic Micro Operations, Shift Micro Operations, Arithmetic Logic Shift Unit, Instruction Codes, Computer Registers Computer Instructions– Instruction Cycle.

Memory - Reference Instructions, Input - Output and Interrupt, STACK

Organization, Instruction Formats, Addressing Modes, DATA Transfer and Manipulation, Program Control, Reduced Instruction Set Computer.

UNIT - II

Micro Programmed Control: Control Memory, Address Sequencing, Microprogram Examples, Design of Control Unit, Hard Wired Control, Microprogrammed Control.

The Memory System: Basic Concepts of Semiconductor RAM Memories, Read-Only Memories, Cache Memories Performance Considerations, Virtual99 Memories Secondary Storage, Introduction to RAID.

UNIT - III

Input-Output Organization: Peripheral Devices, Input-Output Interface,

Asynchronous Data Transfer Modes, Priority Interrupt, Direct Memory Access, Input – Output Processor (IOP), Serial Communication; Introduction to Peripheral Components, Interconnect (PCI) Bus, Introduction to Standard Serial Communication Protocols like RS232, USB, IEEE1394.

UNIT - IV

Operating Systems Overview: Overview of Computer Operating Systems Functions, Protection and Security, Distributed Systems, Special Purpose Systems, Operating Systems Structures-Operating System Services and Systems Calls, System Programs, Operating Systems Generation.

Memory Management: Swapping, Contiguous Memory Allocation, Paging, Structure of The Page Table, Segmentation, Virtual Memory, Demand Paging, Page-Replacement Algorithms, Allocation of Frames, Thrashing Case Studies - UNIX, Linux, Windows **Principles of Deadlock:** System Model, Deadlock Characterization

Principles of Deadlock: System Model, Deadlock Characterization,

Deadlock Prevention, Detection and Avoidance, Recovery from Deadlock.

UNIT - V

File System Interface: The Concept of a File, Access Methods, Directory Structure, File System Mounting, File Sharing, Protection.

File System Implementation: File System Structure, File System

Implementation, Directory Implementation, Allocation Methods, Free-Space Management.

TEXT BOOKS:

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, Safea Zaky, 5th Edition, McGraw Hill.
- 2. Computer Systems Architecture M. Moris Mano, 3rd Edition, Pearson
- 3. Operating System Concepts- Abraham Silberchatz, Peter B. Galvin, Greg Gagne, 8th Edition, John Wiley.

- 1. Computer Organization and Architecture William Stallings 6th Edition, Pearson
- 2. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition PHI
- 3. Fundamentals of Computer Organization and Design Sivaraama Dandamudi Springer Int. Edition.

- 4. Operating Systems Internals and Design Principles, Stallings, 6th Edition–2009, Pearson Education.
- 5. Modern Operating Systems, Andrew S Tanenbaum 2nd Edition, PHI.
- 6. Principles of Operating Systems, B. L. Stuart, Cengage Learning, India Edition.

DIGITAL IMAGE PROCESSING (Professional Elective – I)

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC612PE	3	0	0	3

Course Objectives:

- To comprehend the relation between human visual system and machine perception and processing of digital images.
- To provide a detailed approach towards image processing applications like enhancement, segmentation, and compression.

Course Outcomes:

- Exploration of the limitations of the computational methods on digital images.
- Expected to implement the spatial and frequency domain image transforms on enhancement and restoration of images.
- Elaborate understanding on image enhancement techniques.
- Expected to define the need for compression and evaluate the basic compression algorithms.

UNIT - I

Digital Image Fundamentals & Image Transforms: Digital Image Fundamentals, Sampling and Quantization, Relationship between Pixels.

Image Transforms: 2-D FFT, Properties, Walsh Transform, Hadamard Transform, Discrete Cosine Transform, Haar Transform, Slant Transform, Hotelling Transform.

UNIT - II

Image Enhancement (Spatial Domain): Introduction, Image Enhancement in Spatial Domain, Enhancement through Point Processing, Types of Point Processing, Histogram Manipulation, Linear and Non – Linear Gray Level Transformation, Local or Neighborhood criterion, Median Filter, Spatial Domain High-Pass Filtering.

Image Enhancement (Frequency Domain): Filtering in Frequency Domain, Low Pass (Smoothing) and High Pass (Sharpening) Filters in Frequency Domain.

UNIT - III

Image Restoration: Degradation Model, Algebraic Approach to Restoration, Inverse Filtering, Least Mean Square Filters, Constrained Least Squares Restoration, Interactive Restoration.

UNIT – IV

Image Segmentation: Detection of Discontinuities, Edge Linking And Boundary Detection, thresholding, Region Oriented Segmentation.

Morphological Image Processing: Dilation and Erosion: Dilation, Structuring Element Decomposition, Erosion, Combining Dilation and Erosion, Opening and Closing, Hit or Miss Transformation.

UNIT - V

Image Compression: Redundancies and their Removal Methods, Fidelity Criteria, Image Compression Models, Huffman and Arithmetic Coding, Error Free Compression, Lossy Compression, Lossy and Lossless Predictive Coding, Transform Based Compression, JPEG 2000 Standards.

TEXT BOOKS:

- Digital Image Processing Rafael C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson, 2008
- 2. Digital Image Processing- S Jayaraman, S Esakkirajan, T Veerakumar- MC GRAW HILL EDUCATION, 2010.

- 1. Digital Image Processing and Analysis-Human and Computer Vision Application with using CVIP Tools Scotte Umbaugh, 2nd Ed, CRC Press, 2011
- Digital Image Processing using MATLAB Rafael C. Gonzalez, Richard E Woods and Steven L. Eddings, 2nd Edition, MC GRAW HILL EDUCATION, 2010.
- 3. Digital Image Processing and Computer Vision Somka, Hlavac, Boyle- Cengage Learning (Indian edition) 2008.
- Introductory Computer Vision Imaging Techniques and Solutions- Adrian low, 2008, 2nd Edition

SPREAD SPECTRUM COMMUNICATIONS (Professional Elective – I)

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC613PE	3	0	0	3

Course Objectives: The objectives of this course are to make the student

- Understand the concept of Spread Spectrum and study various types of Spread spectrum sequences and their generation.
- Understand the principles of Code Division Multiple Access (CDMA) and use of Spread spectrum concept in CDMA
- Understand various Code tracing loops for optimum tracking of wideband signals viz spread spectrum signals
- Understand the procedure for synchronization of receiver for receiving the Spread spectrum signal.
- Study the performance of spread spectrum systems in Jamming environment, systems with Forward Error Correction and Multiuser detection in CDMA cellular radio.

Course Outcomes: On completion of this course student will be able to

- Generate various types of Spread spectrum sequences and can simulate CDMA system (Both Transmitter & Receiver).
- Analyze the performance of Spread spectrum systems in Jamming environment and systems with Forward Error Correction.
- Can provide detection and cancellation schemes for Multiusers in CDMA cellular radio.

UNIT - I

Introduction to Spread Spectrum Systems: Fundamental Concepts of Spread Spectrum Systems, Pseudo Noise Sequences, Direct Sequence Spread Spectrum, Frequency Hop Spread Spectrum, Hybrid Direct Sequence Frequency Hop Spread Spectrum, Code Division Multiple Access.

Binary Shift Register Sequences for Spread Spectrum Systems: Introduction, Definitions, Mathematical Background and Sequence Generator Fundamentals, Maximal Length Sequences, Gold Codes.

UNIT - II

Code Tracking Loops: Introduction, Optimum Tracking of Wideband Signals, Base Band Delay-Lock Tracking Loop, Tau-Dither Non-Coherent Tracking Loop, Double Dither Non-Coherent Tracking Loop.

UNIT - III

Initial Synchronization of the Receiver Spreading Code: Introduction, Problem Definition and the Optimum Synchronizer, Serial Search Synchronization Techniques, Synchronization using a Matched Filter, Synchronization by Estimated the Received Spreading Code.

UNIT - IV

Cellular Code Division Multiple Access (CDMA) Principles: Introduction, Wide Band Mobile Channel, The Cellular CDMA System, Single User Receiver in a Multi User Channel, CDMA System Capacity.

Multi-User Detection in CDMA Cellular Radio: Optimal Multi-User Detection, Linear Suboptimal Detectors, Interference Combat Detection Schemes, Interference Cancellation Techniques.

UNIT - V

Performance of Spread Spectrum Systems in Jamming Environments: Spread Spectrum Communication System Model, Performance of Spread Spectrum Systems without Coding. Performance of Spread Spectrum Systems with Forward Error Correction: Elementary Block Coding Concepts, Optimum Decoding Rule, Calculation of Error Probability, Elementary Convolution Coding Concepts, Viterbi Algorithm, Decoding and Bit-Error Rate.

TEXT BOOKS:

- 1. Rodger E Ziemer, Roger L. Peterson and David E Borth "Introduction to Spread Spectrum Communication- Pearson, 1st Edition, 1995.
- 2. Mosa Ali Abu-Rgheff "Introduction to CDMA Wireless Communications." Elsevier Publications, 2008.

- 1. George R. Cooper, Clare D. Mc Gillem "Modern Communication and Spread Spectrum," McGraw Hill, 1986.
- 2. Andrew j. Viterbi "CDMA: Principles of spread spectrum communication," Pearson Education, 1st Edition, 1995.

DIGITAL SYSTEM DESIGN (Professional Elective – I)

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC614PE	3	0	0	3

Course Objectives:

- To provide extended knowledge of digital logic circuits in the form of state model approach.
- To provide an overview of system design approach using programmable logic devices.
- To provide and understand of fault models and test methods.

Course Outcomes:

- To understands the minimization of Finite state machine.
- To exposes the design approaches using ROM's, PAL's and PLA's.
- To provide in depth understanding of Fault models.
- To understands test pattern generation techniques for fault detection.
- To design fault diagnosis in sequential circuits.

UNIT - I

Minimization and Transformation of Sequential Machines: The Finite State Model – Capabilities and limitations of FSM – State equivalence and machine minimization – Simplification of incompletely specified machines.

Fundamental mode model – Flow table – State reduction – Minimal closed covers – Races, Cycles and Hazards.

UNIT - II

Digital Design: Digital Design Using ROMs, PALs and PLAs, BCD Adder, 32 – bit adder, State graphs for control circuits, Scoreboard and Controller, A shift and add multiplier, Array multiplier, Keypad Scanner, Binary divider.

UNIT - III

SM Charts: State machine charts, Derivation of SM Charts, Realization of SM Chart, Implementation of Binary Multiplier, dice game controller.

UNIT - IV:

Fault Modeling & Test Pattern Generation: Logic Fault model – Fault detection & Redundancy- Fault equivalence and fault location –Fault dominance – Single stuck at fault model – Multiple stuck at fault models –Bridging fault model.

Fault diagnosis of combinational circuits by conventional methods – Path sensitization techniques, Boolean Difference method – Kohavi algorithm – Test algorithms – D algorithm,

PODEM, Random testing, Transition count testing, Signature analysis and test bridging faults.

UNIT - V

Fault Diagnosis in Sequential Circuits: Circuit Test Approach, Transition Check Approach – State identification and fault detection experiment, Machine identification, Design of fault detection experiment

TEXT BOOKS:

- 1. Fundamentals of Logic Design Charles H. Roth, 5th ed., Cengage Learning.
- 2. Digital Systems Testing and Testable Design Miron Abramovici, Melvin A. Breuer and Arthur D. Friedman- John Wiley & Sons Inc.

REFERENCE BOOKS:

- 1. Switching and Finite Automata Theory Z. Kohavi , 2nd ed., 2001, McGraw Hill
- 2. Digital Design Morris Mano, M.D.Ciletti, 4th Edition, Pearson

ANTENNAS AND WAVE PROPAGATION

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC601PC	4	0	0	4

Course Objectives: This can be termed a middle level course in the electronic communication engineering domain. The course deals with antenna basics, different types of antennas, some design features, antenna measurements and wave propagation, and has the following main objectives:

- To understand the concept of radiation, antenna definitions and significance of antenna parameters, to derive and analyze the radiation characteristics of thin wire dipole antennas and solve numerical problems.
- To distinguish between UHF, VHF and Microwave Antennas, their requirements, specifications, characteristics and design relations.
- To analyze the characteristics of yagi-uda antennas, helical antennas, pyramidal horns, microstrip patch antennas and parabolic reflectors and identify the requirements to facilitate their design.
- To identify the antenna array requirements, to determine the characteristics of ULAs and estimate the patterns of BSA, EFA, and Binomial Arrays.
- To understand the concepts and set-up requirements for microwave measurements, and familiarize with the procedure to enable antenna measurements.
- To define and distinguish between different phenomenon of wave propagation (ground wave, space wave and sky wave), their frequency dependence, and estimate their characteristics, identifying their profiles and parameters involved.

Course Outcomes: Having gone through this course on Antenna Theory and Techniques, and Wave Propagation, the students would be able to:

- Explain the mechanism of radiation, distinguish between different antenna characteristic parameters, establish their mathematical relations, estimate them for different practical cases.
- Distinguish between short dipoles, half-wave dipoles, quarter-wave monopoles and small loops, configure their current distributions, derive their far fields and radiation characteristics and sketch their patterns.
- Characterize the antennas based on frequency, configure the geometry and establish the radiation patterns of folded dipole, Yagi-Uda Antenna, Helical Antennas, Horn Antennas, and to acquire the knowledge of their analysis, design and development.
- Analyze a microstrip rectangular patch antenna and a parabolic reflector antenna, identify the requirements and relevant feed structure, carry out the design and establish their patterns.
- Specify the requirements for microwave measurements and arrange a setup to carry out the antenna far zone pattern and gain measurements in the laboratory.

- Carry out the Linear Array Analysis, estimate the array factor and characteristics and sketch the pattern for 2-element array, N-element BSA, EFA, modified EFA, Binomial Arrays.
- Classify the different wave propagation mechanisms, identify their frequency ranges, determine the characteristic features of ground wave, ionospheric wave, space wave, duct and tropospheric propagations, and estimate the parameters involved.

UNIT - I

Antenna Basics: Introduction, Basic Antenna Parameters – Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective Height, Illustrative Problems.

Fields from Oscillating Dipole, Field Zones, Front - to-back Ratio, Antenna Theorems, Radiation, Retarded Potentials – Helmholtz Theorem

Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter Wave Monopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths, Illustrative Problems. Loop Antennas - Introduction, Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops (Qualitative Treatment).

UNIT - II

VHF, UHF and Microwave Antennas - I: Arrays with Parasitic Elements, Yagi-Uda Array, Folded Dipoles and their Characteristics, Helical Antennas – Helical Geometry, Helix Modes, Practical Design Considerations for Mono filar Helical Antenna in Axial and Normal Modes, Horn Antennas – Types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns, Illustrative Problems.

UNIT - III

VHF, UHF and Microwave Antennas - II: Microstrip Antennas – Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas – Geometry and Parameters, Characteristics of Microstrip Antennas. Reflector Antennas – Introduction, Flar Sheet and Corner Reflectors, Paraboloidal Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types – Related Features, Illustrative Problems.

UNIT - IV

Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources – Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, End fire Arrays, EFA with Increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays, Illustrative Problems.

Antenna Measurements: Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

UNIT - V

Wave Propagation – I: Introduction, Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts, Ground Wave Propagation (Qualitative Treatment) – Introduction, Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections. Space Wave Propagation – Introduction, Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Tropospheric Propagation.

Wave Propagation – II: Sky Wave Propagation – Introduction, Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

TEXT BOOKS:

- 1. Antennas and Wave Propagation J.D. Kraus, R.J. Marhefka and Ahmad S. Khan, MC GRAW HILL EDUCATION, New Delhi, 4th ed., (Special Indian Edition), 2010.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.

REFERENCE BOOKS:

- 1. Antenna Theory C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.

MICROPROCESSORS AND MICROCONTROLLERS

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC602PC	4	0	0	4

Course Objectives:

• To develop an understanding of the operations of microprocessors and micro controllers; machine language programming and interfacing techniques.

Course Outcomes:

- Understands the internal architecture and organization of 8086, 8051 and ARM processors/controllers.
- Understands the interfacing techniques to 8086 and 8051 and can develop assembly language programming to design microprocessor/ micro controller based systems.

UNIT - I

8086 Architecture: 8086 Architecture-Functional diagram, Register Organization, Memory Segmentation, Programming Model, Memory addresses, Physical Memory Organization, Architecture of 8086, Signal descriptions of 8086, interrupts of 8086.

Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

UNIT - II

Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051.

8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters

UNIT – III

I/O And Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface, ADC, DAC Interface to 8051.

Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232,USB.

UNIT – IV

ARM Architecture: ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

UNIT – V

Advanced ARM Processors: Introduction to CORTEX Processor and its architecture, OMAP Processor and its Architecture.

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals A. K. Ray and K.M. Bhurchandani, MHE, 2nd Edition 2006.
- 2. The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed.
- 3. ARM System Developers guide, Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, Elsevier, 2012

REFERENCE BOOKS:

- 1. Microprocessors and Interfacing, D. V. Hall, MGH, 2nd Edition 2006.
- 2. Introduction to Embedded Systems, Shibu K.V, MHE, 2009
- 3. The 8051 Microcontrollers, Architecture and Programming and Applications -K.Uma Rao, Andhe Pallavi, Pearson, 2009.

DIGITAL SIGNAL PROCESSING

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC603PC	4	0	0	4

Course Objectives: This course is an essential course that provides design techniques for processing all type of signals in various fields. The main objectives are:

- To provide background and fundamental material for the analysis and processing of digital signals.
- To familiarize the relationships between continuous-time and discrete time signals and systems.
- To study fundamentals of time, frequency and Z-plane analysis and to discuss the inter-relationships of these analytic method.
- To study the designs and structures of digital (IIR and FIR) filters from analysis to synthesis for a given specifications.
- The impetus is to introduce a few real-world signal processing applications.
- To acquaint in FFT algorithms, Multi-rate signal processing techniques and finite word length effects.

Course Outcomes: On completion of this subject, the student should be able to:

- Perform time, frequency, and Z -transform analysis on signals and systems.
- Understand the inter-relationship between DFT and various transforms.
- Understand the significance of various filter structures and effects of round off errors.
- Design a digital filter for a given specification.
- Understand the fast computation of DFT and appreciate the FFT processing.
- Understand the tradeoffs between normal and multi rate DSP techniques and finite length word effects.

UNIT - I

Introduction: Introduction to Digital Signal Processing: Discrete Time Signals & Sequences, conversion of continuous to discrete signal, Normalized Frequency, Linear Shift Invariant Systems, Stability, and Causality, linear differential equation to difference equation, Linear Constant Coefficient Difference Equations, Frequency Domain Representation of Discrete Time Signals and Systems

Realization of Digital Filters: Applications of Z – Transforms, Solution of Difference Equations of Digital Filters, System Function, Stability Criterion, Frequency Response of Stable Systems, Realization of Digital Filters – Direct, Canonic, Cascade and Parallel Forms.

UNIT - II

Discrete Fourier Transforms: Properties of DFT, Linear Convolution of Sequences using DFT, Computation of DFT: Over-Lap Add Method, Over-Lap Save Method, Relation between DTFT, DFS, DFT and Z-Transform.

Fast Fourier Transforms: Fast Fourier Transforms (FFT) - Radix-2 Decimation-in-Time and Decimation-in-Frequency FFT Algorithms, Inverse FFT, and FFT with General Radix-N.

UNIT - III

IIR Digital Filters: Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital Filters from Analog Filters, Step and Impulse Invariant Techniques, Bilinear Transformation Method, Spectral Transformations.

UNIT - IV

FIR Digital Filters: Characteristics of FIR Digital Filters, Frequency Response, Design of FIR Filters: Fourier Method, Digital Filters using Window Techniques, Frequency Sampling Technique, Comparison of IIR & FIR filters.

UNIT - V

Multirate Digital Signal Processing: Introduction, Down Sampling, Decimation, Upsampling, Interpolation, Sampling Rate Conversion, Conversion of Band Pass Signals, Concept of Resampling, Applications of Multi Rate Signal Processing.

Finite Word Length Effects: Limit cycles, Overflow Oscillations, Round-off Noise in IIR Digital Filters, Computational Output Round off Noise, Methods to Prevent Overflow, Trade off between Round Off and Overflow Noise, Measurement of Coefficient Quantization Effects through Pole-Zero Movement, Dead Band Effects.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A. V. Oppenheim and R.W. Schaffer, PHI, 2009
- 3. Fundamentals of Digital Signal Processing Loney Ludeman, John Wiley, 2009

- 1. Digital Signal Processing Fundamentals and Applications Li Tan, Elsevier, 2008
- 2. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007
- Digital Signal Processing A Practical approach, Emmanuel C. Ifeachor and Barrie W. Jervis, 2nd Edition, Pearson Education, 2009

DIGITAL SIGNAL PROCESSING LAB

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC604PC	0	0	3	2

Note:

- 1. The Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors).
- 2. Minimum of 12 experiments to be conducted.

List of Experiments

- 1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
- 2. Histogram of White Gaussian Noise and Uniformly Distributed Noise.
- 3. To find DFT / IDFT of given DT Signal
- 4. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
- 5. Obtain Fourier series coefficients by formula and using FET and compare for half sine wave.
- 6. Implementation of FFT of given Sequence
- 7. Determination of Power Spectrum of a given Signal(s).
- 8. Implementation of LP FIR Filter for a given Sequence/Signal.
- 9. Implementation of HP IIR Filter for a given Sequence/Signal
- 10. Generation of Narrow Band Signal through Filtering
- 11. Generation of DTMF Signals
- 12. Implementation of Decimation Process
- 13. Implementation of Interpolation Process
- 14. Implementation of I/D Sampling Rate Converters
- 15. Impulse Response of First order and Second Order Systems.

MICROPROCESSORS AND MICROCONTROLLERS LAB

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EC605PC	0	0	3	2

Note: - Minimum of 12 experiments to be conducted.

The following programs/experiments are to be written for assembler and to be executed the same with 8086 and 8051 kits.

List of Experiments:

- 1. Programs for 16 bit arithmetic operations 8086(using various addressing modes)
- 2. Programs for sorting an array for 8086.
- 3. Programs for searching for a number of characters in a string for 8086.
- 4. Programs for string manipulation for 8086.
- 5. Programs for digital clock design using 8086.
- 6. Interfacing ADC and DAC to 8086.
- 7. Parallel communication between two microprocessor kits using 8255.
- 8. Serial communication between two microprocessor kits using 8251.
- 9. Interfacing to 8086 and programming to control stepper motor.
- 10. Programming using arithmetic, logical and bit manipulation instructions of 8051.
- 11. Program and verify Timer/Counter in 8051.
- 12. Program and verify interrupt handling in 8051.
- 13. UART operation in 8051.
- 14. Communication between 8051 kit and PC
- 15. Interfacing LCD to 8051
- 16. Interfacing Matrix/Keyboard to 8051
- 17. Data transfer from peripheral to memory through DMA controller 8237/8257

ADVANCED ENGLISH COMMUNICATION SKILLS (AECS) LAB

B.Tech. III Year II Sem.	L	Т	Р	С
Course Code: EN606HS	0	0	3	2

Introduction

A course on *Advanced English Communication Skills (AECS) Lab* is considered essential at the third year level of B.Tech and B.Pharmacy courses. At this stage, the students need to prepare themselves for their career which requires them to listen to, read, speak and write in English both for their professional and interpersonal communication. The main purpose of this course is to prepare the students of Engineering for their placements.

Course Objectives: This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve students' fluency in spoken English
- To enable them to listen to English spoken at normal conversational speed
- To help students develop their vocabulary
- To read and comprehend texts in different contexts
- To communicate their ideas relevantly and coherently in writing
- To make students industry-ready
- To help students acquire behavioural skills for their personal and professional life
- To respond appropriately in different socio-cultural and professional contexts

Course Outcomes: Students will be able to:

- Acquire vocabulary and use it contextually
- Listen and speak effectively
- Develop proficiency in academic reading and writing
- Increase possibilities of job prospects
- Communicate confidently in formal and informal contexts

Syllabus

The following course activities will be conducted as part of the Advanced English Communication Skills (AECS) Lab:

- 1. **Inter-personal Communication and Building Vocabulary** Starting a Conversation – Responding Appropriately and Relevantly – Using Appropriate Body Language – Role Play in Different Situations - Synonyms and Antonyms, One-word Substitutes, Prefixes and Suffixes, Idioms and Phrases and Collocations.
- 2. **Reading Comprehension** –General Vs Local Comprehension, Reading for Facts, Guessing Meanings from Context, , Skimming, Scanning, Inferring Meaning.
- 3. Writing Skills Structure and Presentation of Different Types of Writing Letter Writing/Resume Writing/ e-correspondence/ Technical Report Writing.
- 4. **Presentation Skills** Oral Presentations (individual or group) through JAM Sessions/Seminars/PPTs and Written Presentations through Posters/Projects/Reports/ e-mails/Assignments... etc.,
- 5. Group Discussion and Interview Skills Dynamics of Group Discussion, Intervention, Summarizing, Modulation of Voice, Body Language, Relevance, Fluency and Organization of Ideas and Rubrics of Evaluation- Concept and Process,

Pre-interview Planning, Opening Strategies, Answering Strategies, Interview through Tele-conference & Video-conference and Mock Interviews.

Minimum Hardware Requirement:

Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics
- Eight round tables with five movable chairs for each table.
- Audio-visual aids
- LCD Projector
- Public Address system
- Computer with suitable configuration

Suggested Software: The software consisting of the prescribed topics elaborated above should be procured and used.

- **Oxford Advanced Learner's Compass**, 8th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.

- 1. Kumar, Sanjay and Pushp Lata. *English for Effective Communication*, Oxford University Press, 2015.
- 2. Konar, Nira. *English Language Laboratories A Comprehensive Manual*, PHI Learning Pvt. Ltd., 2011.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.TECH. ELECTRONICS AND COMMUNICATION ENGINEERING IV YEAR COURSE STRUCTURE & SYLLABUS (R16)

S.No.	Course Code	Course Title	L	Т	Р	Credits
1	EC701PC	Microwave Engineering	4	0	0	4
2		Professional Elective - II	3	0	0	3
3		Professional Elective - III	3	0	0	3
4		Professional Elective - IV	3	0	0	3
5	EC702PC	VLSI Design	4	0	0	4
6	EC703PC	VLSI and E-CAD Lab	0	0	3	2
7	EC704PC	Microwave Engineering Lab	0	0	3	2
8	EC705PC	Industry Oriented Mini Project	0	0	3	2
9	EC706PC	Seminar	0	0	2	1
		Total Credits	17	0	11	24

Applicable From 2016-17 Admitted Batch

IV YEAR I SEMESTER

IV YEAR II SEMESTER

S.No.	Course Code	Course Title	L	Т	Р	Credits
1		Open Elective – III	3	0	0	3
2		Professional Elective -V	3	0	0	3
3		Professional Elective -VI	3	0	0	3
4	EC801PC	Major Project	0	0	30	15
		Total Credits	9	0	30	24

Professional Elective – I

EC611PE	Computer Organization and Operating System
EC612PE	Digital Image Processing
EC613PE	Spread Spectrum Communications
EC614PE	Digital system Design

Professional Elective – II

EC721PE	Computer Networks
EC722PE	FPGA Programming
EC723PE	Coding Theory and Techniques
EC724PE	Soft Computing Techniques

Professional Elective – III

EC731PE	Wireless Communications and Networks
EC732PE	Internet of Things
EC733PE	Radar Systems
EC734PE	Embedded Sytem Design

Professional Elective – IV

EC741PE	Optimization Techniques
EC742PE	Object Oriented Programming
EC743PE	Electronic Measurements and Instrumentation
EC744PE	Artificial Intelligence

Professional Elective – V

EC851PE	Network Security and Cryptography
EC852PE	System Design Using FPGAs
EC853PE	Optical Communications
EC854PE	Machine Learning

Professional Elective – VI

EC861PE	Actuators and Robot Systems
EC862PE	Analog CMOS IC Design
EC863PE	Global Positioning System
EC864PE	Computer Vision

*Open Elective subjects' syllabus is provided in a separate document.

***Open Elective** – Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD LIST OF OPEN ELECTIVES OFFERED BY VARIOUS DEPARTMENTS FOR B.TECH. III AND IV YEARS

S. No.	Name of the Department Offering Open Electives	Open Elective – I (Semester – V)	Open Elective – II (Semester – VI)	
1	Aeronautical Engg.	AE511OE: Introduction	AE621OE: Introduction to	
		to Space Technology Aerospace Engineering		
2	Automobile Engg.	CE511OE: Disaster	MT621OE: Data Structures	
		Management	MT622OE: Artificial	
		MT512OE: Intellectual	Neural Networks	
		Property Rights		
3	Biomedical Engg.	BM511OE: Reliability	BM621OE: Medical	
		Engineering	Electronics	
4	Civil Engg.	CE511OE: Disaster	CE621OE: Remote	
		Management.	Sensing and GIS	
			CE622OE: Geo-	
			Informatics	
			CE623OE: Intellectual	
			Property Rights	
5	Civil and Environmental	CE511OE: Disaster	CN621OE: Environmental	
	Engg.	Management	Impact Assessment	
			CE623OE: Intellectual	
			Property Rights	
6	Computer Science and Engg.	CS511OE: Operating	CS621OE: Java	
	/ Information Technology	Systems	Programming	
		CS512OE: Database	CS622OE: Software	
		Management Systems	Testing Methodologies	
			CS623OE: Cyber Security	
7	Electronics and	EC511OE: Principles of	EC621OE: Principles of	
	Communication Engg. /	Electronic	Computer Communications	
	Electronics and Telematics	Communications	and Networks	
	Engg.			
8	Electronics and Computer	EM511OE: Scripting	EM621OE: Soft	
	Engg.	Languages	Computing Techniques	
9	Electrical and Electronics	EE511OE: Non-	EE621OE: Design	
	Engg.	Conventional Power	Estimation and Costing of	
		Generation	Electrical Systems	
		EE512OE: Electrical	EE622OE: Energy Storage	
		Engineering Materials	Systems	
		EE513OE:	EE623OE: Introduction to	
		Nanotechnology	Mechatronics	
10	Electronics and	EI511OE: Electronic	lectronic EI621OE: Industrial	
	Instrumentation Engg.	Measurements and	Electronics	
		Instrumentation		
11	Mechanical Engg.	ME511OE: Optimization	ME621OE: World Class	
		Techniques	Manufacturing	
		ME512OE: Computer	ME622OE: Fundamentals	
		Graphics	of Robotics	
		ME513OE: Introduction	ME623OE: Fabrication	

1			
		Processes	
Mechanical Engg. (Material	NT511OE: Fabrication	NT621OE: Introduction to	
Science and	Processes	Material Handling	
Nanotechnology)	NT512OE: Non	NT622OE: Non-	
	destructive Testing	Conventional Energy	
	Methods	Sources	
	NT513OE:	NT623OE: Robotics	
	Fundamentals of		
	Engineering Materials		
Mechanical Engg.	MT511OE: Analog and	MT621OE: Data Structures	
(mechatronics)	Digital I.C. Applications	MT622OE: Artificial	
``´´	MT512OE: Intellectual	Neural Networks	
	Property Rights	MT623OE: Industrial	
	1 0	Management	
	Organization	C	
Metallurgical and Materials	MM511OE: Materials	MM621OE: Science and	
Engg.	Characterization	Technology of Nano	
	Techniques	Materials	
	-	MM622OE: Metallurgy of	
		Non Metallurgists	
Mining Engg.	MN5110E: Introduction	MN621OE: Coal	
	to Mining Technology	Gasification, Coal Bed	
		Methane and Shale Gas	
Petroleum Engg.	PE511OE: Materials	PE621OE: Energy	
	Science and Engineering	Management and	
	PE512OE: Renewable	Conservation	
	Energy Sources	PE622OE: Optimization	
	PE513OE:	Techniques	
	Environmental	PE623OE:	
	Engineering	Entrepreneurship and	
		Small Business Enterprises	
	Science and Nanotechnology) Mechanical Engg. (mechatronics) Metallurgical and Materials Engg. Mining Engg.	Science and Nanotechnology)Processes NT512OE: Non destructive Testing Methods NT513OE: Fundamentals of Engineering MaterialsMechanical Engg. (mechatronics)MT511OE: Analog and Digital I.C. Applications MT512OE: Intellectual Property Rights MT513OE: Computer OrganizationMetallurgical and MaterialsMM511OE: Materials Characterization TechniquesMining Engg.MN511OE: Introduction to Mining TechnologyPetroleum Engg.PE511OE: Materials Science and Engineering PE512OE: Renewable 	

S.	Name of the Department	Open Elective –III	
No.	Offering Open Electives	(Semester – VIII)	
1	Aeronautical Engg.	AE831OE: Air Transportation Systems	
		AE832OE: Rockets and Missiles	
2	Automobile Engg.	AM831OE: Introduction to Mechatronics	
		AM832OE: Microprocessors and Microcontrollers	
3	Biomedical Engg.	BM831OE: Telemetry and Telecontrol	
		BM832OE: Electromagnetic Interference and	
		Compatibility	
4	Civil Engg.	CE831OE: Environmental Impact Assessment	
		CE832OE: Optimization Techniques in Engineering	
		CE833OE: Entrepreneurship and Small Business	
		Enterprises	
5	Civil and Environmental	CN831OE: Remote Sensing and GIS	
	Engg.	CE833OE: Entrepreneurship and Small Business	

		Enterprises
6	Computer Science and	CS831OE: Linux Programming
	Engg. / Information	CS832OE: R Programming
	Technology	CS833OE: PHP Programming
7	Electronics and	EC831OE: Electronic Measuring Instruments
	Communication Engg. /	č
	Electronics and Telematics	
	Engg.	
8	Electronics and Computer	EM831OE: Data Analytics
	Engg.	
9	Electrical and Electronics	EE831OE: Entrepreneur Resource Planning
	Engg.	EE832OE: Management Information Systems
		EE833OE: Organizational Behaviour
10	Electronics and	EI831OE: Sensors and Transducers,
	Instrumentation Engg.	EI832OE: PC Based Instrumentation
11	Mechanical Engg.	ME831OE: Total Quality Management
		ME832OE: Industrial Safety, Health, and
		Environmental Engineering
		ME833OE: Basics of Thermodynamics
		ME834OE: Reliability Engineering
12	Mechanical Engg. (Material	NT831OE: Concepts of Nano Science And Technology
	Science and	NT832OE: Synthesis of Nanomaterials
	Nanotechnology)	NT833OE: Characterization of Nanomaterials
13	Mechanical Engg.	MT831OE: Renewable Energy Sources
	(mechatronics)	MT832OE: Production Planning and Control
		CE833OE: Entrepreneurship and Small Business
		Enterprises
14	Metallurgical and Materials	MM831OE: Design and Selection of Engineering
	Engg.	Materials
15	Mining Engg.	MN831OE: Solid Fuel Technology
		MN832OE: Health & Safety in Mines
16	Petroleum Engg.	PE831OE: Disaster Management
		PE832OE: Fundamentals of Liquefied Natural Gas
		PE833OE: Health, Safety and Environment in
		Petroleum Industry

***Open Elective** – Students should take Open Electives from List of Open Electives Offered by Other Departments/Branches Only.

Ex: - A Student of Mechanical Engineering can take Open Electives from all other departments/branches except Open Electives offered by Mechanical Engineering Dept.

MICROWAVE ENGINEERING

B.Tech. IV Year I Sem. Course Code: EC701PC/ET743PE

L	Т	Р	С
4	0	0	4

Course Objectives: This is a core course in Microwave Communications domain, and covers contents related to Microwave Theory and Techniques. The main objectives of the course are:

- To get familiarized with microwave frequency bands, their applications and to understand the limitations and losses of conventional tubes at these frequencies.
- To develop the theory related to microwave transmission lines, and to determine the characteristics of rectangular waveguides, microstrip lines, and different types of waveguide components and ferrite devices.
- To distinguish between different types of microwave tubes, their structures and principles of microwave power generation, and to characterize their performance features and applications at tube levels as well as with solid state devices.
- To impart the knowledge of Scattering Matrix, its formulation and utility, and establish the S-Matrix for various types of microwave junctions.
- To understand the concepts of microwave measurements, identify the equipment required and precautions to be taken, and get familiarized with the methods of measurement of microwave power and various other microwave parameters.

Course Outcomes: Having gone through this course covering different aspects of microwave theory and techniques, the students would be able to

- To analyze completely the rectangular waveguides, their mode characteristics, and design waveguides for solving practical microwave transmission line problems.
- To distinguish between the different types of waveguide and ferrite components, explain their functioning and select proper components for engineering applications.
- To distinguish between the methods of power generation at microwave frequencies, derive the performance characteristics of 2-Cavity and Relfex Klystrons, Magnetrons, TWTs and estimate their efficiency levels, and solve related numerical problems
- To realize the need for solid state microwave sources, understand the concepts of TEDs, RWH Theory and explain the salient features of Gunn Diodes and ATT Devices.
- To establish the properties of Scattering Matrix, formulate the S-Matrix for various microwave junctions, and understand the utility of S-parameters in microwave component design.
- To set up a microwave bench, establish the measurement procedure and conduct the experiments in microwave lab for measurement of various microwave parameters.

UNIT - I

Microwave Transmission Lines - I: Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides – Solution of Wave Equations in

Rectangular Coordinates, TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations, Power Transmission, Impossibility of TEM Mode. Illustrative Problems, Micro strip Lines– Introduction, Z_0 Relations, Effective Dielectric Constant.

UNIT - II

Cavity Resonators– Introduction, Rectangular Cavities, Dominant Modes and Resonant Frequencies, Q Factor and Coupling Coefficients, Illustrative Problems

Waveguide Components and Applications: Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide Windows, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Different Types, Resistive Card and Rotary Vane Attenuators; Waveguide Phase Shifters – Types, Dielectric and Rotary Vane Phase Shifters, Waveguide Multiport Junctions – E plane and H plane Tees, Magic Tee. Directional Couplers – 2 Hole, Bethe Hole types, Illustrative Problems

Ferrites– Composition and Characteristics, Faraday Rotation, Ferrite Components – Gyrator, Isolator, Circulator.

UNIT - III

Microwave Tubes: Limitations and Losses of conventional Tubes at Microwave Frequencies, Microwave Tubes – O Type and M Type Classifications, O-type Tubes : 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for O/P Power and Efficiency. Reflex Klystrons – Structure, Velocity Modulation and Applegate Diagram, Mathematical Theory of Bunching, Power Output, Efficiency, Oscillating Modes and O/P Characteristics, Illustrative Problems.

Helix TWTs: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and Amplification Process (qualitative treatment), Suppression of Oscillations, Gain Considerations.

UNIT - IV

M-Type Tubes:

Introduction, Cross-field Effects, Magnetrons – Different Types, Cylindrical Traveling Wave Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics, Illustrative Problems

Microwave Solid State Devices: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diodes – Principle, RWH Theory, Characteristics, Modes of Operation - Gunn Oscillation Modes, Introduction to Avalanche Transit Time Devices.

UNIT - V

Scattering Matrix– Significance, Formulation and Properties, S Matrix Calculations for -2 port Junctions, E plane and H plane Tees, Magic Tee, Circulator and Isolator, Illustrative Problems.

Microwave Measurements: Description of Microwave Bench – Different Blocks and their Features, Errors and Precautions, Microwave Power Measurement, Bolometers. Measurement of Attenuation, Frequency. Standing Wave Measurements – Measurement of Low and High VSWR, Cavity Q, Impedance Measurements.

TEXT BOOKS:

- 1. Microwave Devices and Circuits Samuel Y. Liao, Pearson, 3rd Edition, 2003.
- 2. Microwave Principles Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi, 2004.

- 1. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
- 2. Microwave Engineering G.S. Raghuvanshi, Cengage Learning India Pvt. Ltd., 2012.
- 3. Microwave Engineering Passive Circuits Peter A. Rizzi, PHI, 1999.
- 4. Microwave Engineering David M. Pozar, John Wiley & Sons (Asia) Pvt Ltd., 1989, 3r ed., 2011 Reprint.

COMPUTER NETWORKS (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: ET702PC/EC721PE

Course Objectives:

- To introduce the fundamental various types of computer networks.
- To demonstrate the TCP/IP and OSI models with merits and demerits.
- To explore the various layers of OSI Model.
- To introduce UDP and TCP Models.
- To have the concept of different routing techniques for data communications.

Course Outcomes:

- Students should understand and explore the basics of Computer Networks and Various Protocols. He/ She will be in a position to understand the World Wide Web concepts.
- Students will be in a position to administrate a network and flow of information further he/she can understand easily the concepts of network security, Mobile and ad hoc networks.

UNIT - I

Introduction to Networks: Internet, Protocols and Standards, the OSI Model, Layers in OSI Model, TCP/IP Suite, Addressing.

Physical Layer: Multiplexing, Transmission Media, Circuit Switched Networks, Datagram Networks, and Virtual Circuit Networks.

UNIT - II

Data Link Layer: Introduction, Checksum, Framing, Flow and Error Control, Noiseless Channels, Noisy Channels, Random Access Controlled Access, Channelization, IEEE Standards, Ethernet, Giga-Bit Ethernet, Wireless LANs, SONET-SDH, Frame Relay and ATM.

UNIT - III

Network Layer: Logical Addressing, Internetworking, Tunneling, Address Mapping, ICMP, IGMP, Forwarding, Routing-Flooding, Bellman& Ford, Disjkstra's routing protocols, RIP, OSPF, BGP,- and Multicast Routing Protocols. Connecting Devices-Passive Hubs, Repeaters, Active Hubs, Bridges, Routers.

UNIT - IV

Transport Layer: Process to Process Delivery, UDP, TCP and SCTP Protocols, Congestion, Congestion Control, Quality of Service.

L T P C 3 0 0 3

Application Layer: Domain Name Space, DNS in Internet, Electronic Mail, File Transfer Protocol, WWW, HTTP, SNMP, Multi-Media.

UNIT - V

Network Security: Security services, mechanisms and attacks, IPSec, SSL, VPN, Firewall. Bluetooth, Zigbee, IPv4, IPv6.

TEXT BOOKS:

- 1. Data Communications and Networking Behrouz A. Forouzan, 4th Edition Mc Graw Hill Education, 2006.
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education.
- 3. Computer Networking: A Top-Down Approach Featuring the Internet, James F. Kurose, K. W. Ross, 3rd Edition, Pearson Education.

- 1. Data communications and Networks by William Stallings, Pearson Edu. 10th Edition.
- 2. Data communication and Networks Bhusan Trivedi, Oxford University Press 2016.
- 3. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education.
- 4. Understanding Communications and Networks, 3rd Edition, W.A.Shay, Cengage Learning.

FPGA PROGRAMMING (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC722PE

L T P C 3 0 0 3

Prerequisite: Switching Theory & Logic Design

UNIT - I

Simple Programmable Logic Devices (SPLDS):

Programmable Read Only Memories (PROMs), Programmable Logic Arrays (PLAs), Programmable Array Logic (PALs), the Masked Gate Array ASIC.

Complex Programmable Logic Devices (CPLDs):

CPLD Architectures, Function Blocks, I/O Blocks, Clock Drivers, Interconnect CPLD Technology and Programmable Elements, Embedded Devices.

Field Programmable Gate Arrays (FPGAs):

FPGA Architectures, Configurable Logic Blocks, Configurable I/o Blocks, Embedded Devices, Programmable Inter Connect, Clock Circuitry, SRAM vs. Anti-fuse programming, FPGA Selection Criteria.

UNIT - II

Universal Design Methodology for Programmable Devices:

Introduction to UDM and UDM-PD, writing a Specification, Specification Review, Choosing Device and Tools, Design, Verification, Final Review, System Integration and Test. Hardware Descriptive Languages, Structure of VHDL & Verilog module, operator, Data types, Top-Down Design, Synchronous Design, Floating Nodes, Bus Contention, One-Hot state Encoding.

UNIT - III

Data flow Description and Behavioral Descriptions:

Introduction to styles types of hardware description –Behavioral, Structural, Dataflow and Mixed type and language descriptions.

Data flow Description: Structure of the dataflow description, Signal Declaration and Assignment Statements, Concurrent Signal assignments, Constant declaration and assignments, assigning a delay time to the signal, Data type-Vectors.

Behavioral Descriptions: Structure of the HDL Behavioral description, The VHDL/ Verilog HDL variable – assignment statement, sequential statement – IF, signal and variable assignment, CASE & LOOP statements

UNIT - IV

Structural and Switch level Descriptions.

Structural Description: Organization of the structural description, binding, state machines, Generate (HDL), Generic (VHDL), and parameter (Verilog).

Switch level Description: Useful definitions, Single NMOS & PMOS switches-verilog & VHDL description of NMOS & PMOS Switches, serial and parallel combinations of switches, Switch level Description of –primitive gates, Simple combinational logics, simple sequential circuits, Bidirectional Switches.

UNIT - V

Procedures, Tasks, Functions and Verification:

Mixed type descriptions, Procedures and Tasks: Procedures (VHDL), Tasks (Verilog), Examples of Procedures and Tasks, Functions in VHDL & Verilog HDL.

Verification: Introduction to verification, simulation, static timing Analysis, Association languages and formal verification.

TEXT BOOKS:

- 1. Designing with FPGAS & CPLDS- Bob Zeidman, CMP Books, First Printed in India 2011
- 2. HDL Programming Fundamental-VHDL & Verilog, Botros, Cengage Learning, Third Indian Reprint 2012

CODING THEORY AND TECHNIQUES (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC723PE/ET732PE

L T P C 3 0 0 3

Pre-requisite: Digital Communications

Course Objectives:

- To acquire the knowledge in measurement of information and errors.
- Understand the importance of various codes for communication systems.
- To design encoder and decoder of various codes.
- To known the applicability of source and channel codes.

Course Outcomes: Upon completing this course, the student will be able to

- Learn measurement of information and errors.
- Obtain knowledge in designing various source codes and channel codes.
- Design encoders and decoders for block and cyclic codes.
- Understand the significance of codes in various applications.

UNIT - I

Coding for Reliable Digital Transmission and storage:

Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies. **Source Codes:** Shannon-fano coding, Huffman coding

UNIT - II

Linear Block Codes:

Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - III

Cyclic Codes:

Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT - IV

Convolution Codes:

Encoding of Convolution Codes- Structural and Distance Properties, state, tree, trellis diagrams, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of

Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolution codes in ARQ system.

UNIT - V

BCH Codes:

Minimum distance and BCH bounds, Decoding procedure for BCH codes, Syndrome computation and iterative algorithms, Error locations polynomials for single and double error correction.

TEXT BOOKS:

- 1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J. Costello, Jr, Prentice Hall, Inc 2014.
- 2. Error Correcting Coding Theory-Man Young Rhee, McGraw Hill Publishing, 1989.

- 1. Digital Communications- John G. Proakis, 5th Ed., TMH, 2008.
- 2. Introduction to Error Control Codes-Salvatore Gravano, oxford
- 3. Error Correction Coding Mathematical Methods and Algorithms Todd K. Moon, Wiley India, 2006.
- 4. Information Theory, Coding and Cryptography Ranjan Bose, 2nd Ed., TMH, 2009.

SOFT COMPUTING TECHNIQUES (PROFESSIONAL ELECTIVE – II)

B.Tech. IV Year I Sem. Course Code: EC724PE

L T P C 3 0 0 3

Course Objectives: This course makes the students to Understand

- Fundamentals of Neural Networks & Feed Forward Networks.
- Associative Memories & ART Neural Networks.
- Fuzzy Logic & Systems.
- Genetic Algorithms and Hybrid Systems.

Course Outcomes: On completion of this course the students will be able to

- Identify and employ suitable soft computing techniques in classification and optimization problems.
- Design hybrid systems to suit a given real life problem.

UNIT – I

Fundamentals of Neural Networks & Feed Forward Networks:

Basic Concept of Neural Networks, Human Brain, Models of an Artificial Neuron, Learning Methods, Neural Networks Architectures, Single Layer Feed Forward Neural Network: The Perceptron Model, Multilayer Feed Forward Neural Network: Architecture of a Back-Propagation Network (BPN), The Solution, Backpropagation Learning, Selection of various Parameters in BPN. Application of Back propagation Networks in Pattern Recognition & Image Processing.

UNIT – II

Associative Memories & ART Neural Networks:

Basic concepts of Linear Associative, Basic concepts of Dynamical systems, Mathematical Foundation of Discrete-Time Hop field Networks (HPF), Mathematical Foundation of Gradient-Type Hopfield Networks, Transient response of Continuous Time Networks, Applications of HPF in Solution of Optimization Problem: Minimization of the Traveling salesman tour length, Summing networks with digital outputs, Solving Simultaneous Linear Equations, Bidirectional Associative Memory Networks; Cluster Structure, Vector Quantization, Classical ART Networks, Simplified ART Architecture.

UNIT – III

Fuzzy Logic & Systems:

Fuzzy sets, Crisp Relations, Fuzzy Relations, Crisp Logic, Predicate Logic, Fuzzy Logic, Fuzzy Rule based system, Defuzzification Methods, Applications: Greg Viot's Fuzzy Cruise Controller, Air Conditioner Controller.

UNIT – IV

Genetic Algorithms:

Basic Concepts of Genetic Algorithms (GA), Biological background, Creation of Offsprings, Working Principle, Encoding, Fitness Function, Reproduction, Inheritance Operators, Cross Over, Inversion and Deletion, Mutation Operator, Bit-wise Operators used in GA, Generational Cycle, Convergence of Genetic Algorithm.

UNIT – V

Hybrid Systems:

Types of Hybrid Systems, Neural Networks, Fuzzy Logic, and Genetic Algorithms Hybrid, Genetic Algorithm based BPN: GA Based weight Determination, Fuzzy Back Propagation Networks: LR-type fuzzy numbers, Fuzzy Neuron, Fuzzy BP Architecture, Learning in Fuzzy BPN, Inference by fuzzy BPN.

TEXT BOOKS:

- 1. Introduction to Artificial Neural Systems J.M. Zurada, Jaico Publishers
- 2. Neural Networks, Fuzzy Logic & Genetic Algorithms: Synthesis & Applications -S. Rajasekaran, G.A. Vijayalakshmi Pai, PHI, 2011.
- 3. Genetic Algorithms by David E. Gold Berg, Pearson Education India, 2006.
- 4. Neural Networks & Fuzzy Sytems- Kosko.B., PHI, Delhi, 1994.

- 1. Artificial Neural Networks Dr. B. Yagananarayana, , PHI, 1999.
- 2. An introduction to Genetic Algorithms Mitchell Melanie, MIT Press, 1998
- 3. Fuzzy Sets, Uncertainty and Information- Klir G.J. & Folger. T. A., PHI, Delhi, 1993.

WIRELESS COMMUNICATIONS AND NETWORKS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: EC731PE

L T P C 3 0 0 3

Prerequisite: Digital Communications

Course Objectives:

- To provide the students with the fundamental treatment about many practical and theoretical concepts that forms basic of wireless communications.
- To equip the students with various kinds of wireless networks and its operations.
- To provide an analytical perspective on the design and analysis of the traditional and emerging wireless networks, and to discuss the nature of, and solution methods to, the fundamental problems in wireless networking.
- To train students to understand the architecture and operation of various wireless wide area networks such as GSM, IS-95, GPRS and SMS.

Course Outcomes: Upon completion of the course, the student will be able to:

- Understand cellular system design concepts.
- Analyze various multiple access schemes used in wireless communication.
- Demonstrate wireless Local and Wide area networks and their specifications.
- Familiar with some of the existing and emerging wireless standards.
- Understand the concept of orthogonal frequency division multiplexing.

UNIT - I

The Cellular Concept-System Design Fundamentals:

Introduction, Frequency Reuse, Channel Assignment Strategies, Handoff Strategies-Prioritizing Handoffs, Practical Handoff Considerations, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Trunking and Grade of Service, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring.

UNIT – II

Mobile Radio Propagation: Large-Scale Path Loss:

Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, The Three Basic Propagation Mechanisms, Reflection-Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, Diffraction-Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models- Longley-Rice Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models-Partition losses (Same Floor),

Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT – III

Mobile Radio Propagation: Small –Scale Fading and Multipath:

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small-Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small-Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke's model for flat fading, spectral shape due to Doppler spread in Clarke's model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT - IV

Equalization and Diversity:

Introduction, Fundamentals of Equalization, Training A Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity Techniques-Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Feedback or Scanning Diversity, Maximal Ratio Combining, Equal Gain Combining, Polarization Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT - V

Wireless Networks:

Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparision of IEEE 802.11 a, b, g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, Hiper Lan, WLL.

TEXT BOOKS:

- Wireless Communications, Principles, Practice Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
- 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
- 3. Principles of Wireless Networks Kaveh Pah Laven and P. Krishna Murthy, 2002, PE

4. Mobile Cellular Communication – Gottapu Sasibhushana Rao, Pearson Education, 2012.

- 1. Wireless Digital Communications Kamilo Feher, 1999, PHI.
- 2. Wireless Communication and Networking William Stallings, 2003, PHI.

INTERNET OF THINGS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: CS724PE/EC732PE

L T P C 3 0 0 3

Course Objectives:

- To introduce the terminology, technology and its applications
- To introduce the concept of M2M (machine to machine) with necessary protocols
- To introduce the Python Scripting Language which is used in many IoT devices
- To introduce the Raspberry PI platform, that is widely used in IoT applications
- To introduce the implementation of web-based services on IoT devices.

UNIT - I

Introduction to Internet of Things -Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT communication models, IoT Communication APIs, IoT enabled Technologies – Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates, Domain Specific IoTs – Home, City, Environment, Energy, Retail, Logistics, Agriculture, Industry, health and Lifestyle.

UNIT - II

IoT and M2M - Software defined networks, network function virtualization, difference between SDN and NFV for IoT. Basics of IoT System Management with NETCOZF, YANG -NETCONF, YANG, SNMP NETOPEER

UNIT - III

Introduction to Python - Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, data/time operations, classes, Exception handling. Python packages - JSON, XML, HTTP Lib, URL Lib, SMTP Lib.

UNIT - IV

IoT Physical Devices and Endpoints - Introduction to Raspberry PI - Interfaces (serial, SPI, I2C). Programming – Python program with Raspberry PI with focus of interfacing external gadgets, controlling output, reading input from pins.

UNIT - V

IoT Physical Servers and Cloud Offerings - Introduction to Cloud Storage models and communication APIs. Webserver – Web server for IoT, Cloud for IoT, Python web application framework. Designing a RESTful web API

TEXT BOOK:

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547

 Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

RADAR SYSTEMS (PROFESSIONAL ELECTIVE – III)

B.Tech. IV Year I Sem. Course Code: EC733PE

L T P C 3 0 0 3

Prerequisite: Analog and Digital Communications

Course Objectives:

- To explore the concepts of radar and its frequency bands.
- To understand Doppler effect and get acquainted with the working principles of CW radar, FM-CW radar.
- To impart the knowledge of functioning of MTI and Tracking Radars.
- To explain the deigning of a Matched Filter in radar receivers.

Course Outcomes: Upon completing this course, the student will be able to

- Derive the complete radar range equation.
- Understand the need and functioning of CW, FM-CW and MTI radars
- Known various Tracking methods.
- Derive the matched filter response characteristics for radar receivers.

UNIT – I

Basics of Radar: Maximum Unambiguous Range, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Modified Radar Range Equation. **Radar Equation:** SNR, Envelope Detector – False Alarm Time and Probability, Integration of Radar Pulses, Radar Cross Section of Targets, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment).

UNIT – II

CW and Frequency Modulated Radar: Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar.

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter.

UNIT - III

MTI and Pulse Doppler Radar: Principle, MTI Radar - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

$\mathbf{UNIT} - \mathbf{IV}$

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT – V

Detection of Radar Signals in Noise Matched Filter Receiver – Response Characteristics and Derivation, Correlation Function and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise.

Radar Receivers – Noise Figure and Noise Temperature, Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Applications, Advantages and Limitations.

TEXT BOOK:

 Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2ndEd., 2007.

REFERENCE BOOKS:

- 1. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 2. Radar Principles Peebles, Jr., P.Z., Wiley, New York, 1998.
- 3. Principles of Modern Radar: Basic Principles Mark A. Richards, James A. Scheer, William A. Holm, Yesdee, 2013
- 4. Radar Handbook Merrill I. Skolnik, 3rd Ed., McGrawHill Education, 2008.

EMBEDDED SYSTEM DESIGN (Professional Elective - III)

B.Tech. IV Year I Sem. Course Code: EI701PC/EC734PE/ET742PE

L T P C 3 0 0 3

Course Objectives:

- To provide an overview of Design Principles of Embedded System.
- To provide clear understanding about the role of firmware, operating systems in correlation with hardware systems.

Course Outcomes:

- Expected to understand the selection procedure of Processors in the embedded domain.
- Design Procedure for Embedded Firmware.
- Expected to visualize the role of Real time Operating Systems in Embedded Systems.
- Expected to evaluate the Correlation between task synchronization and latency issues

UNIT - I

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT - II

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS). **Memory:** ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT - III

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT - IV

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT - V

Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an RTOS.

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

- 1. Embedded Systems Raj Kamal, MC GRAW HILL EDUCATION.
- 2. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 3. Embedded Systems Lyla, Pearson, 2013
- 4. An Embedded Software Primer David E. Simon, Pearson Education.

OPTIMIZATION TECHNIQUES (**PROFESSIONAL ELECTIVE – IV**)

B.Tech. IV Year I Sem. Course Code: EE734PE/EC741PE

L T P C 3 0 0 3

Prerequisite: Mathematics –I & Mathematics –II

Course Objectives:

- To introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
- Constrained and unconstrained optimization techniques for solving and optimizing an electrical and electronic engineering circuits design problems in real world situations.
- To explain the concept of Dynamic programming and its applications to project implementation.

Course Outcomes: After completion of this course, the student will be able to

- explain the need of optimization of engineering systems
- understand optimization of electrical and electronics engineering problems
- apply classical optimization techniques, linear programming, simplex algorithm, transportation problem
- apply unconstrained optimization and constrained non-linear programming and dynamic programming
- Formulate optimization problems.

UNIT – I

Introduction and Classical Optimization Techniques: Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems.

Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints.

Solution by method of Lagrange multipliers – Multivariable Optimization with inequality constraints – Kuhn – Tucker conditions.

UNIT – II

Linear Programming: Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm.

Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems.

UNIT – III

Unconstrained Nonlinear Programming: One dimensional minimization methods, Classification, Fibonacci method and Quadratic interpolation method

Unconstrained Optimization Techniques: Univariant method, Powell's method and steepest descent method.

UNIT - IV

Constrained Nonlinear Programming: Characteristics of a constrained problem - classification - Basic approach of Penalty Function method - Basic approach of Penalty Function method - Basic approaches of Interior and Exterior penalty function methods - Introduction to convex programming problem.

$\mathbf{UNIT} - \mathbf{V}$

Dynamic Programming: Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution.

TEXT BOOKS:

- 1. Singiresu S. Rao, Engineering Optimization: Theory and Practice by John Wiley and Sons, 4th edition, 2009.
- 2. H. S. Kasene & K. D. Kumar, Introductory Operations Research, Springer (India), Pvt. Ltd., 2004

- 1. George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer series in operations research 3rd edition, 2003.
- 2. H.A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prentice Hall, 2007.
- 3. Kalyanmoy Deb, "Optimization for Engineering Design Algorithms and Examples", PHI Learning Pvt. Ltd, New Delhi, 2005.

OBJECT ORIENTED PROGRAMMING (**PROFESSIONAL ELECTIVE – IV**)

B.Tech. IV Year I Sem. Course Code: EC742PE

L T P C 3 0 0 3

Course Objectives:

- To introduce the object-oriented programming concepts.
- To understand object-oriented programming concepts, and apply them in solving problems.
- To introduce the principles of inheritance and polymorphism; and demonstrate how they relate to the design of abstract classes
- To introduce the implementation of packages and interfaces
- To introduce the concepts of exception handling and multithreading.
- To introduce the design of Graphical User Interface using applets and swing controls.

Course Outcomes

- Able to solve real world problems using OOP techniques.
- Able to understand the use of abstract classes.
- Able to solve problems using java collection framework and I/o classes.
- Able to develop multithreaded applications with synchronization.
- Able to develop applets for web applications.
- Able to design GUI based applications

UNIT - I

Object-oriented thinking- A way of viewing world – Agents and Communities, messages and methods, Responsibilities, Classes and Instances, Class Hierarchies- Inheritance, Method binding, Overriding and Exceptions, Summary of Object-Oriented concepts. Java buzzwords, An Overview of Java, Data types, Variables and Arrays, operators, expressions, control statements, Introducing classes, Methods and Classes, String handling.

Inheritance– Inheritance concept, Inheritance basics, Member access, Constructors, Creating Multilevel hierarchy, super uses, using final with inheritance, Polymorphism-ad hoc polymorphism, pure polymorphism, method overriding, abstract classes, Object class, forms of inheritance- specialization, specification, construction, extension, limitation, combination, benefits of inheritance, costs of inheritance.

UNIT - II

Packages- Defining a Package, CLASSPATH, Access protection, importing packages.

Interfaces- defining an interface, implementing interfaces, Nested interfaces, applying interfaces, variables in interfaces and extending interfaces.

Stream based I/O(java.io) – The Stream Classes-Byte streams and Character streams, reading console Input and Writing Console Output, File class, Reading and writing Files,

Random access file operations, The Console class, Serialization, Enumerations, auto boxing, generics.

UNIT - III

Exception handling - Fundamentals of exception handling, Exception types, Termination or resumptive models, Uncaught exceptions, using try and catch, multiple catch clauses, nested try statements, throw, throws and finally, built- in exceptions, creating own exception sub classes.

Multithreading- Differences between thread-based multitasking and process-based multitasking, Java thread model, creating threads, thread priorities, synchronizing threads, inter thread communication.

UNIT - IV

The Collections Framework (java.util)- Collections overview, Collection Interfaces, The Collection classes- Array List, Linked List, Hash Set, Tree Set, Priority Queue, Array Deque. Accessing a Collection via an Iterator, Using an Iterator, The For-Each alternative, Map Interfaces and Classes, Comparators, Collection algorithms, Arrays, The Legacy Classes and Interfaces- Dictionary, Hashtable, Properties, Stack, Vector

More Utility classes, String Tokenizer, Bit Set, Date, Calendar, Random, Formatter, Scanner

UNIT - V

GUI Programming with Swing – Introduction, limitations of AWT, MVC architecture, components, containers. Understanding Layout Managers, Flow Layout, Border Layout, Grid Layout, Card Layout, Grid Bag Layout.

Event Handling- The Delegation event model- Events, Event sources, Event Listeners, Event classes, Handling mouse and keyboard events, Adapter classes, Inner classes, Anonymous Inner classes.

A Simple Swing Application, **Applets** – Applets and HTML, Security Issues, Applets and Applications, passing parameters to applets. Creating a Swing Applet, Painting in Swing, A Paint example, Exploring Swing Controls- JLabel and Image Icon, JText Field, The Swing Buttons- JButton, JToggle Button, JCheck Box, JRadio Button, JTabbed Pane, JScroll Pane, JList, JCombo Box, Swing Menus, Dialogs.

TEXT BOOKS:

- 1. Java The complete reference, 9th edition, Herbert Schildt, McGraw Hill Education (India) Pvt. Ltd.
- 2. Understanding Object-Oriented Programming with Java, updated edition, T. Budd, Pearson Education.

- 1. An Introduction to programming and OO design using Java, J. Nino and F.A. Hosch, John Wiley & sons.
- 2. Introduction to Java programming, Y. Daniel Liang, Pearson Education.
- 3. Object Oriented Programming through Java, P. Radha Krishna, Universities Press.

- 4. Programming in Java, S. Malhotra, S. Chudhary, 2nd edition, Oxford Univ. Press.
- 5. Java Programming and Object-oriented Application Development, R. A. Johnson, Cengage Learning.

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year I Sem. Course Code: EC743PE

L T P C 3 0 0 3

Course Objectives:

- It provides an understanding of various measuring systems functioning and metrics for performance analysis.
- Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes: On completion of this course student can be able to

- Identify the various electronic instruments based on their specifications for carrying out a particular task of measurement.
- Measure various physical parameters by appropriately selecting the transducers.
- Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.

UNIT - I

Block Schematics of Measuring Systems: Performance Characteristics, Static Characteristics, Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum Squares formula, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag; Measuring Instruments: DC Voltmeters, D' Arsonval Movement, DC Current Meters, AC Voltmeters and Current Meters, Ohmmeters, Multi meters, Meter Protection, Extension of Range, True RMS Responding Voltmeters, Specifications of Instruments.

UNIT - II

Signal Analyzers: AF, HF Wave Analyzers, Harmonic Distortion, Heterodyne wave Analyzers, Spectrum Analyzers, Power Analyzers, Capacitance-Voltage Meters, Oscillators. Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, Video Signal Generators, and Specifications

UNIT - III

Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajous Figures, CRO Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement of Time, Period and Frequency Specifications.

Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

UNIT - IV

Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers.

UNIT - V

Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.

Measurement of Physical Parameters: Flow Measurement, Displacement Meters, Liquid level Measurement, Measurement of Humidity and Moisture, Velocity, Force, Pressure – High Pressure, Vacuum level, Temperature -Measurements, Data Acquisition Systems.

TEXT BOOKS:

- 1. Electronic Measurements and Instrumentation K. Lal Kishore, Pearson Education 2010.
- 2. Electronic Instrumentation: H. S. Kalsi Mc Graw Hill Education, 2nd Edition 2004.
- 3. Electronic Instrumentation and Measurements David A. Bell, 3rd Edition Oxford Univ. Press, 2013.

REFERENCES:

- 1. Electronic Instrumentation and Measurements David A. Bell, Oxford Univ. Press, 1997.
- Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W.D. Cooper: PHI 5th Edition 2003.
- 3. Electronic Measurements and Instrumentation: B.M. Oliver, J.M. Cage MC GRAW HILL EDUCATION Reprint 2009.
- 4. Industrial Instrumentation: T.R. Padmanabham Springer 2009.

ARTIFICIAL INTELLIGENCE (PROFESSIONAL ELECTIVE – IV)

B.Tech. IV Year I Sem. Course Code: IT733PE/EC744PE

Prerequisites:

- 1. A course on "Computer Programming and Data Structures"
- 2. A course on "Advanced Data Structures"
- 3. A course on "Design and Analysis of Algorithms"
- 4. A course on "Mathematical Foundations of Computer Science"
- 5. Some background in linear algebra, data structures and algorithms, and probability will all be helpful

Course Objectives:

- To learn the distinction between optimal reasoning Vs. human like reasoning
- To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.
- To learn different knowledge representation techniques.
- To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

- Ability to formulate an efficient problem space for a problem expressed in natural language.
- Select a search algorithm for a problem and estimaate its time and space complexities.
- Possess the skill for representing knowledge using the appropriate technique for a given problem.
- Possess the ability to apply AI techniques to solve problems of game playing, and machine learning.

UNIT - I

Problem Solving by Search-I: Introduction to AI, Intelligent Agents

Problem Solving by Search –II: Problem-Solving Agents, Searching for Solutions, Uninformed Search Strategies: Breadth-first search, Uniform cost search, Depth-first search, Iterative deepening Depth-first search, Bidirectional search, Informed (Heuristic) Search Strategies: Greedy best-first search, A* search, Heuristic Functions, Beyond Classical Search: Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces, Searching with Non-Deterministic Actions, Searching wih Partial Observations, Online Search Agents and Unknown Environment.

UNIT - II

Problem Solving by Search-II and Propositional Logic

L T P C 3 0 0 3 Adversarial Search: Games, Optimal Decisions in Games, Alpha–Beta Pruning, Imperfect Real-Time Decisions.

Constraint Satisfaction Problems: Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Local Search for CSPs, The Structure of Problems.

Propositional Logic: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses, Forward and backward chaining, Effective Propositional Model Checking, Agents Based on Propositional Logic.

UNIT - III

Logic and Knowledge Representation

First-Order Logic: Representation, Syntax and Semantics of First-Order Logic, Using First-Order Logic, Knowledge Engineering in First-Order Logic.

Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification and Lifting, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events. Mental Events and Mental Objects, Reasoning Systems for Categories, Reasoning with Default Information.

UNIT - IV

Planning

Classical Planning: Definition of Classical Planning, Algorithms for Planning with State-Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches.

Planning and Acting in the Real World: Time, Schedules, and Resources, Hierarchical Planning, Planning and Acting in Nondeterministic Domains, Multi agent Planning.

UNIT - V

Uncertain knowledge and Learning

Uncertainty: Acting under Uncertainty, Basic Probability Notation, Inference Using Full Joint Distributions, Independence, Bayes' Rule and Its Use,

Probabilistic Reasoning: Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability, Other Approaches to Uncertain Reasoning; Dempster-Shafer theory.

Learning: Forms of Learning, Supervised Learning, Learning Decision Trees.Knowledge in Learning: Logical Formulation of Learning, Knowledge in Learning, Explanation-Based Learning, Learning Using Relevance Information, Inductive Logic Programming.

TEXT BOOKS

1. Artificial Intelligence A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCES:

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

VLSI DESIGN

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC702PC/ET721PE/EI741PE	4	0	0	4

Course Objectives: The objectives of the course are to:

- Give exposure to different steps involved in the fabrication of ICs using MOS transistor, CMOS/BICMOS transistors, and passive components.
- Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- Provide concept to design different types of logic gates using CMOS inverter and analyze their transfer characteristics.
- Provide design concepts to design building blocks of data path of any system using gates.
- Understand basic programmable logic devices and testing of CMOS circuits.

Course Outcomes: Upon successfully completing the course, the student should be able to:

- Acquire qualitative knowledge about the fabrication process of integrated circuit using MOS transistors.
- Choose an appropriate inverter depending on specifications required for a circuit
- Draw the layout of any logic circuit which helps to understand and estimate parasitic of any logic circuit
- Design different types of logic gates using CMOS inverter and analyze their transfer characteristics
- Provide design concepts required to design building blocks of data path using gates.
- Design simple memories using MOS transistors and can understand design of large memories.
- Design simple logic circuit using PLA, PAL, FPGA and CPLD.
- Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system

UNIT – I

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS **Basic Electrical Properties:** Basic Electrical Properties of MOS and BiCMOS Circuits: I_{ds} -V_{ds} relationships, MOS transistor threshold Voltage, g_m, g_{ds}, Figure of merit ωo ; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, 2 µm CMOS Design rules for wires, Contacts and Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

UNIT – III

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan - in, Fan - out, Choice of layers.

UNIT - IV

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT - V

Programmable Logic Devices: PLAs, FPGAs, CPLDs, Standard Cells, Programmable Array Logic, Design Approach, Parameters influencing low power design.

CMOS Testing: CMOS Testing, Need for testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

TEXT BOOKS:

- 1. Essentials of VLSI circuits and systems Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition
- 2. CMOS VLSI Design A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.

- 1. CMOS logic circuit Design John .P. Uyemura, Springer, 2007.
- 2. Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.

VLSI & E-CAD LAB

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC703PC	0	0	3	2

List of Experiments

Design and implementation of the following CMOS digital/analog circuits using **Cadence / Mentor Graphics / Synopsys /Equivalent** CAD tools. The design shall include Gate-level design, Transistor-level design, Hierarchical design, Verilog HDL/VHDL design, Logic synthesis, Simulation and verification, Scaling of CMOS Inverter for different technologies, study of secondary effects (temperature, power supply and process corners), Circuit optimization with respect to area, performance and/or power, Layout, Extraction of parasitics and back annotation, modifications in circuit parameters and layout consumption, DC/transient analysis, Verification of layouts (DRC, LVS)

E-CAD programs:

Programming can be done using any complier. Down load the programs on FPGA/CPLD boards and performance testing may be done using pattern generator (32 channels) and logic analyzer apart from verification by simulation with any of the front end tools.

- 1. HDL code to realize all the logic gates
- 2. Design of 2-to-4 decoder
- 3. Design of 8-to-3 encoder (without and with priority)
- 4. Design of 8-to-1 multiplexer and 1-to-8 demultiplexer
- 5. Design of 4 bit binary to gray code converter
- 6. Design of 4 bit comparator
- 7. Design of Full adder using 3 modeling styles
- 8. Design of flip flops: SR, D, JK, T
- 9. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
- 10. Finite State Machine Design

VLSI programs:

- Introduction to layout design rules. Layout, physical verification, placement & route for complex design, static timing analysis, IR drop analysis and crosstalk analysis of the following:
 - 1. Basic logic gates
 - 2. CMOS inverter
 - 3. CMOS NOR/ NAND gates
 - 4. CMOS XOR and MUX gates
 - 5. Static / Dynamic logic circuit (register cell)
 - 6. Latch
 - 7. Pass transistor
 - 8. Layout of any combinational circuit (complex CMOS logic gate).
 - 9. Analog Circuit simulation (AC analysis) CS & CD amplifier

Note: Any *SIX of* the above experiments from each part are to be conducted (Total 12)

MICROWAVE ENGINEERING LAB

B.Tech. IV Year I Sem.	L	Т	Р	С
Course Code: EC704PC	0	0	3	2

Note: Minimum of 12 experiments to be conducted

- 1. Reflex Klystron Characteristics
- 2. Gunn Diode Characteristics
- 3. Directional Coupler Characteristics
- 4. VSWR Measurement of Mached load
- 5. VSWR mesurement of with open and short circuit loads
- 6. Measurement of Waveguide Parameters
- 7. Measurement of Impedance of a given Load
- 8. Measurement of Scattering Parameters of a E plane Tee
- 9. Measurement of Scattering Parameters of a H plane Tee
- 10. Measurement of Scattering Parameters of a Magic Tee
- 11. Measurement of Scattering Parameters of a Circulator
- 12. Attenuation Measurement
- 13. Microwave Frequency Measurement
- 14. Antenna Pattern Measurements.

NETWORK SECURITY AND CRYPTOGRAPHY (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC851PE

L T P C 3 0 0 3

Course Objectives:

- Understand the basic concept of Cryptography and Network Security, their mathematical models
- To understand the necessity of network security, threats/vulnerabilities to networks and countermeasures
- To understand Authentication functions with Message Authentication Codes and Hash Functions.
- To provide familiarity in Intrusion detection and Firewall Design Principles

Course Outcomes: Upon completing this course, the student will be able to

- Describe network security fundamental concepts and principles
- Encrypt and decrypt messages using block ciphers and network security technology and protocols
- Analyze key agreement algorithms to identify their weaknesses
- Identify and assess different types of threats, malware, spyware, viruses, vulnerabilities

UNIT - I

Security Services, Mechanisms and Attacks, A Model for Internetwork security, Classical Techniques: Conventional Encryption model, Steganography, Classical Encryption Techniques.

Modern Techniques: Simplified DES, Block Cipher Principles, Data Encryption standard, Strength of DES, Block Cipher Design Principles.

UNIT - II

Encryption: Triple DES, International Data Encryption algorithm, Blowfish, RC5, Characteristics of Advanced Symmetric block Ciphers. Placement of Encryption function, Traffic confidentiality, Key distribution, Random Number Generation.

UNIT – III

Public Key Cryptography: Principles, RSA Algorithm, Key Management, Diffie-Hellman Key exchange, Elliptic Curve Cryptograpy.

Number Theory: Prime and Relatively prime numbers, Modular arithmetic, Fermat's and Euler's theorems, Testing for primality, Euclid's Algorithm, the Chinese remainder theorem, Discrete logarithms.

UNIT - IV

Message Authentication and Hash Functions: Authentication requirements and functions, Message Authentication, Hash functions, Security of Hash functions and MACs.

Hash and Mac Algorithms: MD-5, Message digest Algorithm, Secure Hash Algorithm.

Digital signatures and Authentication protocols: Digital signatures, Authentication Protocols, Digital signature standards.

Authentication Applications: Kerberos, Electronic Mail Security: Pretty Good Privacy, SIME/MIME.

$\mathbf{UNIT} - \mathbf{V}$

IP Security: Overview, Architecture, Authentication, Encapsulating Security Payload, Key Management. Web Security: Web Security requirements, Secure sockets layer and Transport layer security, Secure Electronic Transaction.

Intruders, Viruses and Worms: Intruders, Viruses and Related threats.

Fire Walls: Fire wall Design Principles, Trusted systems.

TEXT BOOKS:

- 1. Cryptography and Network Security: Principles and Practice William Stallings, Pearson Education.
- 2. Network Security: The complete reference, Robert Bragg, Mark Rhodes, TMH, 2004.

- 1. Network Security Essentials (Applications and Standards) by William Stallings Pearson Education.
- 2. Fundamentals of Network Security by Eric Maiwald (Dreamtech press)
- 3. Principles of Information Security, Whitman, Thomson.
- 4. Introduction to Cryptography, Buchmann, Springer.

SYSTEM DESIGN USING FPGAs (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC852PE

L T P C 3 0 0 3

Prerequisite: Switching Theory and Logic Design

UNIT - I

Integrated Design Process and Methodology, Hardware Descriptive language and digital circuit primitives- Flip flop, latch, Three state Buffer, combinational gates, HDL Synthesis Rules, pads.

HDL Simulation Environment, Synthesis Environment, synthesis Technology library, HDL Design process for a Block.

UNIT - II

Design of Basic Combinational circuits through VHDL/Verilog HDL

Selectors, Encoder, Code Converter, Equality Checker, Comparators, Half adder, Full adder, Carry ripple adder, carry look ahead adder, Count one circuit, leading zero Circuit, Barrel Shifter.

UNIT - III

Design of Basic Sequential Circuit Through VHDL/Verilog HDL

Signal manipulator, counter, Shift Register, Parallel to serial Converter, Serial to parallel convertor, General framework to design registers- Interrupt Registers, DMA and control Register, configuration registers, Register Block portioning and synthesis.

UNIT - IV

Clock and Reset Circuits

Clock Buffer and Clock Tree, Clock Tree generation, Reset Circuitry, Clock Skew and Fixes, Synchronization between clock domains, clock Divider, Gated clock.

UNIT - V

Design Case Study

Design Description, Design partition, Design verification, Design Synthesis, Worst-case Timing analysis, Best-case Timing Analysis, Net list Generation, Post layout Verification, Design Management.

TEXT BOOK:

1. Digital Systems Design with VHDL and Synthesis – K. C. Chang, Wiley-India Edition

OPTICAL COMMUNICATIONS (**PROFESSIONAL ELECTIVE – V**)

B.Tech. IV Year II Sem. Course Code: EC853PE

Prerequisite: Analog Communications and Digital Communications

Course Objectives: The objectives of the course are:

- To realize the significance of optical fibre communications.
- To understand the construction and characteristics of optical fibre cable.
- To develop the knowledge of optical signal sources and power launching.
- To identify and understand the operation of various optical detectors.
- To understand the design of optical systems and WDM.

Course Outcomes: At the end of the course, the student will be able to:

- Understand and analyze the constructional parameters of optical fibres.
- Be able to design an optical system.
- Estimate the losses due to attenuation, absorption, scattering and bending.
- Compare various optical detectors and choose suitable one for different applications.

UNIT - I

Overview of Optical Fiber Communication: - Historical development, The general system, Advantages of Optical Fiber Communications, Optical Fiber Wave Guides- Introduction, Ray Theory Transmission, Total Internal Reflection, Acceptance Angle, Numerical Aperture, Skew Rays, Cylindrical Fibers- Modes, Vnumber, Mode Coupling, Step Index Fibers, Graded Index Fibers.

Single Mode Fibers- Cut Off Wavelength, Mode Field Diameter, Effective Refractive Index, Fiber Materials Glass, Halide, Active Glass, Chalgenide Glass, Plastic Optical Fibers.

UNIT - II

Signal Distortion in Optical Fibers: Attenuation, Absorption, Scattering and Bending Losses, Core and Cladding Losses, Information Capacity Determination, Group Delay, Types of Dispersion - Material Dispersion, Wave-Guide Dispersion, Polarization Mode Dispersion, Intermodal Dispersion, Pulse Broadening, Optical Fiber Connectors- Connector Types, Single Mode Fiber Connectors, Connector Return Loss.

UNIT - III

Fiber Splicing: Splicing Techniques, Splicing Single Mode Fibers, Fiber Alignment and Joint Loss- Multimode Fiber Joints, Single Mode Fiber Joints.

Optical Sources- LEDs, Structures, Materials, Quantum Efficiency, Power, Modulation, Power Bandwidth Product, Injection Laser Diodes- Modes, Threshold Conditions, External

L T P C 3 0 0 3

Quantum Efficiency, Laser Diode Rate Equations, Resonant Frequencies, Reliability of LED & ILD.

Source to Fiber Power Launching: - Output Patterns, Power Coupling, Power Launching, Equilibrium Numerical Aperture, Laser Diode to Fiber Coupling.

UNIT - IV

Optical Detectors: Physical Principles of PIN and APD, Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors, Optical Receiver Operation- Fundamental Receiver Operation, Digital Signal Transmission, Error Sources, Receiver Configuration, Digital Receiver Performance, Probability of Error, Quantum Limit, Analog Receivers.

UNIT - V

Optical System Design: Considerations, Component Choice, Multiplexing, Point-to- Point Links, System Considerations, Link Power Budget with Examples, Overall Fiber Dispersion in Multi-Mode and Single Mode Fibers, Rise Time Budget with Examples.

Transmission Distance, Line Coding in Optical Links, WDM, Necessity, Principles, Types of WDM, Measurement of Attenuation and Dispersion, Eye Pattern.

TEXT BOOKS:

- 1. Optical Fiber Communications Gerd Keiser, TMH, 4th Edition, 2008.
- 2. Optical Fiber Communications John M. Senior, Pearson Education, 3rd Edition, 2009.

- 1. Fiber Optic Communications D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
- 2. Text Book on Optical Fibre Communication and its Applications S.C. Gupta, PHI, 2005.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Ediition, 2004.
- 4. Introduction to Fiber Optics by Donald J.Sterling Jr. Cengage learning, 2004.
- 5. Optical Communication Systems John Gowar, 2nd Edition, PHI, 2001.

MACHINE LEARNING (PROFESSIONAL ELECTIVE – V)

B.Tech. IV Year II Sem. Course Code: EC854PE/EI864PE

L T P C 3 0 0 3

Prerequisites:

- Data Structures
- Knowledge on statistical methods

Course Objectives:

- This course explains machine learning techniques such as decision tree learning, Bayesian learning etc.
- To understand computational learning theory.
- To study the pattern comparison techniques.

Course Outcomes:

- Understand the concepts of computational intelligence like machine learning
- Ability to get the skill to apply machine learning techniques to address the real time problems in different areas
- Understand the Neural Networks and its usage in machine learning application.

UNIT - I

Introduction - Well-posed learning problems, designing a learning system, Perspectives and issues in machine learning

Concept learning and the general to specific ordering – introduction, a concept learning task, concept learning as search, find-S: finding a maximally specific hypothesis, version spaces and the candidate elimination algorithm, remarks on version spaces and candidate elimination, inductive bias.

Decision Tree Learning – Introduction, decision tree representation, appropriate problems for decision tree learning, the basic decision tree learning algorithm, hypothesis space search in decision tree learning, inductive bias in decision tree learning, issues in decision tree learning.

UNIT - II

Artificial Neural Networks-1– Introduction, neural network representation, appropriate problems for neural network learning, perceptions, multilayer networks and the back-propagation algorithm.

Artificial Neural Networks-2- Remarks on the Back-Propagation algorithm, An illustrative example: face recognition, advanced topics in artificial neural networks.

Evaluation Hypotheses – Motivation, estimation hypothesis accuracy, basics of sampling theory, a general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithms.

UNIT - III

Bayesian learning – Introduction, Bayes theorem, Bayes theorem and concept learning, Maximum Likelihood and least squared error hypotheses, maximum likelihood hypotheses for predicting probabilities, minimum description length principle, Bayes optimal classifier, Gibs algorithm, Naïve Bayes classifier, an example: learning to classify text, Bayesian belief networks, the EM algorithm.

Computational learning theory – Introduction, probably learning an approximately correct hypothesis, sample complexity for finite hypothesis space, sample complexity for infinite hypothesis spaces, the mistake bound model of learning.

Instance-Based Learning- Introduction, *k*-nearest neighbour algorithm, locally weighted regression, radial basis functions, case-based reasoning, remarks on lazy and eager learning.

UNIT - IV

Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space search, genetic programming, models of evolution and learning, parallelizing genetic algorithms.

Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning – Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis.

TEXT BOOK:

1. Machine Learning – Tom M. Mitchell, - MGH

REFERENCE:

1. Machine Learning: An Algorithmic Perspective, Stephen Marshland, Taylor & Francis

ACTUATORS AND ROBOT SYSTEMS (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem.	L	Т	Р	С
Course Code: EC861PE	3	0	0	3

UNIT - I

Introduction & Basic Definitions

Introduction, Control Programs for Robots, Industry Applications of Robots, Pick and Place, Gantry and Arm type Robots in typical set-ups like Automobile Industry

Coordinate Systems: Cartesian, Cylindrical, Polar, and Revolute systems: Robot Positioning: Robot Arms; Axes, their ranges, offset and In-line Wrist: Roll, Pitch and Yaw, their meaning in Robotics

UNIT - II

Mechanical Aspects

Kinematics, Inverse Kinematics, Motion Planning and Mobile Mechanisms

UNIT - III

Sensors and Applications

Range and Use of Sensors, Microswitches, Resistance Transducers, Piezo-electric, Infrared and Lasers Applications of Sensors: Reed Switches, Ultrasonic, Barcode Readers and RFID

UNIT - IV

Robot Systems

Hydraulic and Electrical Systems Including Pumps, valves, solenoids, cylinders, stepper motors, Encoders and AC Motors

UNIT - V

Programming of Robots

Programming of Robots such as Lego Robots, Programming environment, Example Applications, Safety considerations

TEXT BOOKS:

- 1. Introduction to Robotics P.J. Mckerrow, ISBN: 0201182408
- 2. Introduction to Robotics S. Nikv, 2001, Prentice Hall,
- 3. Mechatronics and Robotics: Design & Applications A. Mutanbara, 1999, CRC Press.

REFERENCE BOOK:

1. Robotics – K.S. Fu, R.C. Gonzalez and C.S.G. Lee, 2008, TMH.

ANALOG CMOS IC DESIGN (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC862PE

L T P C 3 0 0 3

Pre-Requisite: Analog Electronics

Course Objectives: Analog circuits play a very crucial role in all electronic systems and due to continued miniaturization; many of the analog blocks are not getting realized in CMOS technology.

- To understand most important building blocks of all CMOS analog Ics.
- To study the basic principle of operation, the circuit choices and the tradeoffs involved in the MOS transistor level design common to all analog CMOS ICs.
- To understand specific design issues related to single and multistage voltage, current and differential amplifiers, their output and impedance issues, bandwidth, feedback and stability.
- To understand the design of differential amplifiers, current amplifiers and OP AMPs.

Course Outcomes: After studying the course, each student is expected to be able to

- Design basic building blocks of CMOS analog ICs.
- Carry out the design of single and two stage operational amplifiers and voltage references.
- Determine the device dimensions of each MOSFETs involved.
- Design various amplifiers like differential, current and operational amplifiers.

UNIT - I

MOS Devices and Modeling

The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

UNIT - II

Analog CMOS Sub-Circuits

MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT - III

CMOS Amplifiers

Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

UNIT - IV

CMOS Operational Amplifiers

Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

UNIT - V

Comparators

Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

TEXT BOOKS

- 1. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.
- 2. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

REFERENCES

- 1. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edn, 2013.
- 2. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition.
- 3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.

GLOBAL POSITIONING SYSTEM (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC863PE

L T P C 3 0 0 3

UNIT - I

Introduction: Basic concept, system architecture, GPS and GLONASS Overview, Satellite Navigation, Time and GPS, User position and velocity calculations, GPS, Satellite Constellation, Operation Segment, User receiving Equipment, Space Segment Phased development, GPS aided Geoaugmented navigation (GAGAN) architecture.

UNIT - II

Signal Characteristics: GPS signal components, purpose, properties and power level, signal acquisition and tracking, Navigation information extraction, pseudorange estimation, frequency estimation, GPS satellite position calculation, Signal structure, anti spoofing (AS), selective availability, Difference between GPS and GALILEO satellite construction.

UNIT - III

GPS Receivers & Data Errors: Receiver Architecture, receiver design options, Antenna design, GPS error sources, SA errors, propagation errors, ionospheric error, tropospheric error, multipath, ionospheric error, estimation using dual frequency GPS receiver, Methods of multipath mitigation, Ephemeris data errors, clock errors.

UNIT - IV

Differential GPS: Introduction, LADGPS, WADGPS, Wide Area Augmentation systems, GEO Uplink subsystem, GEO downlink systems, Geo Orbit determination, Geometric analysis, covariance analysis, GPS /INS Integration Architectures

UNIT - V

GPS Applications: GPS in surveying, Mapping and Geographical Information System, Precision approach Aircraft landing system, Military and Space application, intelligent transportation system.

GPS orbital parameters, description of receiver independent exchange format (RINEX), Observation data and navigation message data parameters, GPS position determination, least squares method

TEXT BOOK:

1. Mohinder S.Grewal, Lawrence R.Weill, Angus P.Andrews, "Global positioning systems, Inertial Navigation and Integration", Wiley 2007.

REFERENCE:

1. E.D.Kaplan, Christopher J. Hegarty, "Understanding GPS Principles and Applications", Artech House Boston 2005.

COMPUTER VISION (PROFESSIONAL ELECTIVE – VI)

B.Tech. IV Year II Sem. Course Code: EC864PE

Course Objectives:

- To review image processing techniques for computer vision.
- To understand shape and region analysis.
- To understand Hough Transform and its applications to detect lines, circles, ellipses.
- To understand three-dimensional image analysis techniques.
- To understand motion analysis.
- To study some applications of computer vision algorithms.

Course Outcomes: Upon completion of this course, the students should be able to

- Implement fundamental image processing techniques required for computer vision.
- Perform shape analysis.
- Implement boundary tracking techniques.
- Apply chain codes and other region descriptors.
- Apply Hough Transform for line, circle, and ellipse detections.
- Apply 3D vision techniques.
- Implement motion related techniques.
- Develop applications using computer vision techniques.

UNIT - I

Image Processing Foundations: Review of image processing techniques – classical filtering operations – thresholding techniques – edge detection techniques – corner and interest point detection – mathematical morphology – texture.

UNIT - II

Shapes and Regions: Binary shape analysis – connectedness – object labeling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion –boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.

UNIT - III

Hough Transform: Line detection – Hough Transform (HT) for line detection – foot-ofnormal method – line localization – line fitting – RANSAC for straight line detection – HT based circular object detection– accurate center location – speed problem – ellipse detection – Case study: Human Iris location– hole detection – generalized Hough Transform (GHT) – spatial matched filtering – GHT for ellipse detection – object location – GHT for feature collation.

L T P C 3 0 0 3

UNIT - IV

3D Vision and Motion: Methods for 3D vision – projection schemes – shape from shading – photometric stereo – shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion – spline-based motion – optical flow – layered motion.

UNIT - V

Applications: Application: Photo album – Face detection – Face recognition – Eigen faces – Active appearance and 3D shape models of faces Application: Surveillance – foreground-background separation – particle filters – Chamfer matching, tracking, and occlusion – combining views from multiple cameras – human gait analysis Application: In-vehicle vision system: locating roadway – road markings – identifying road signs – locating pedestrians.

TEXT BOOKS:

- 1. Simon J. D. Prince, —Computer Vision: Models, Learning, and Inferencell, Cambridge University Press, 2012.
- 2. Mark Nixon and Alberto S. Aquado, —Feature Extraction & Image Processing for Computer Vision^{II}, Third Edition, Academic Press, 2012.
- 3. E. R. Davies, —Computer & Machine Vision, Fourth Edition, Academic Press, 2012.

REFERENCES:

- 1. D. L. Baggio et al., —Mastering OpenCV with Practical Computer Vision Projectsl, Packt Publishing, 2012.
- 2. Jan Erik Solem, —Programming Computer Vision with Python: Tools and algorithms for analyzing images, O'Reilly Media, 2012.
- 2. R. Szeliski, —Computer Vision: Algorithms and Applications^{II}, Springer 2011.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD R18 B.TECH LIST OF OPEN ELECTIVES FOR III YEAR

Branch	Open Elective Offered (OE – I)
Civil Engineering	Disaster Preparedness & Planning Management
Computer Science & Engineering /	1. Entrepreneurship
Information Technology	2. Fundamentals of Management for Engineers
	3. Cyber Law & Ethics
Election and Instrumentation Engineering	Basics of Sensors Technology
Election and Communication Engineering	Fundamentals of Internet of Things
Electrical and Electronics Engineering	1. Reliability Engineering
	2. Renewable Energy Sources
Mechanical Engineering/ Aeronautical	Quantitative Analysis for Business Decisions
Engineering	
Mechatronics	1. Industrial Management
	2. Non-Conventional Energy Sources
Petroleum Engineering	General Geology
Metallurgical and Materials Engineering	1. Testing of Materials
	2. Alloy Steels
Mining Engineering	1. Introduction to Mining Technology
	2. Coal Gasification, CBM & Shale Gas

Applicable From 2018-19 Admitted Batch

*Note: Students should take Open Electives from the List of Open Electives Offered by Other Departments/Branches Only.

CE600OE: DISASTER PREPAREDNESS & PLANNING MANAGEMENT

B.Tech. Civil Engg. III Year II Sem.

L T/P/D C

3 0/0/0 3

Course Objectives: The objectives of the course are

- To Understand basic concepts in Disaster Management
- To Understand Definitions and Terminologies used in Disaster Management
- To Understand Types and Categories of Disasters
- To Understand the Challenges posed by Disasters
- To understand Impacts of Disasters Key Skills

Course Outcomes: The student will develop competencies in

- the application of Disaster Concepts to Management
- Analyzing Relationship between Development and Disasters.
- Ability to understand Categories of Disasters and
- realization of the responsibilities to society

UNIT - I:

Introduction - Concepts and definitions: disaster, hazard, vulnerability, resilience, risks severity, frequency and details, capacity, impact, prevention, mitigation.

UNIT - II

Disasters - Disasters classification; natural disasters (floods, draught, cyclones, volcanoes, earthquakes, tsunami, landslides, coastal erosion, soil erosion, forest fires etc.); manmade disasters (industrial pollution, artificial flooding in urban areas, nuclear radiation, chemical spills, transportation accidents, terrorist strikes, etc.); hazard and vulnerability profile of India, mountain and coastal areas, ecological fragility.

UNIT - III

Disaster Impacts - Disaster impacts (environmental, physical, social, ecological, economic, political, etc.); health, psycho-social issues; demographic aspects (gender, age, special needs); hazard locations; global and national disaster trends; climate change and urban disasters.

UNIT - IV

Disaster Risk Reduction (DRR) - Disaster management cycle – its phases; prevention, mitigation, preparedness, relief and recovery; structural and non-structural measures; risk analysis, vulnerability and capacity assessment; early warning systems, Post disaster environmental response (water, sanitation, food safety, waste management, disease control, security, communications); Roles and responsibilities of government, community, local institutions, NGOs and other stakeholders; Policies and legislation for disaster risk reduction, DRR programmes in India and the activities of National Disaster Management Authority.

UNIT - V

Disasters, Environment and Development - Factors affecting vulnerability such as impact of developmental projects and environmental modifications (including of dams, landuse changes, urbanization etc.), sustainable and environmental friendly recovery; reconstruction and development methods.

TEXT BOOKS:

- 1. Pradeep Sahni, 2004, Disaster Risk Reduction in South Asia, Prentice Hall.
- 2. Singh B.K., 2008, Handbook of Disaster Management: Techniques & Guidelines, Rajat Publication.

3. Ghosh G.K., 2006, Disaster Management, APH Publishing Corporation

- 1. http://ndma.gov.in/ (Home page of National Disaster Management Authority)
- 2. http://www.ndmindia.nic.in/ (National Disaster management in India, Ministry of Home Affairs).
- 3. Disaster Medical Systems Guidelines. Emergency Medical Services Authority, State of California, EMSA no.214, June 2003
- 4. Inter-Agency Standing Committee (IASC) (Feb. 2007). IASC Guidelines on Mental Health and Psychosocial Support in Emergency Settings. Geneva: IASC

CS600OE: ENTREPRENEURSHIP

III Year B.Tech. CSE/IT II-Sem

L	Т	Ρ	С
3	0	0	3

Course Objective: The aim of this course is to have a comprehensive perspective of inclusive learning, ability to learn and implement the Fundamentals of Entrepreneurship.

Course Outcome: It enables students to learn the basics of Entrepreneurship and entrepreneurial development which will help them to provide vision for their own Start-up.

UNIT – I

Entrepreneurial Perspectives

Introduction to Entrepreneurship – Evolution - Concept of Entrepreneurship - Types of Entrepreneurs -Entrepreneurial Competencies, Capacity Building for Entrepreneurs. Entrepreneurial Training Methods - Entrepreneurial Motivations - Models for Entrepreneurial Development - The process of Entrepreneurial Development.

UNIT - II

New Venture Creation

Introduction, Mobility of Entrepreneurs, Models for Opportunity Evaluation; Business plans – Purpose, Contents, Presenting Business Plan, Procedure for setting up Enterprises, Central level - Startup and State level - T Hub, Other Institutions initiatives.

UNIT – III

Management of MSMEs and Sick Enterprises

Challenges of MSMEs, Preventing Sickness in Enterprises – Specific Management Problems; Industrial Sickness; Industrial Sickness in India – Symptoms, process and Rehabilitation of Sick Units.

UNIT - IV

Managing Marketing and Growth of Enterprises

Essential Marketing Mix of Services, Key Success Factors in Service Marketing, Cost and Pricing, Branding, New Techniques in Marketing, International Trade.

UNIT – V

Strategic perspectives in Entrepreneurship

Strategic Growth in Entrepreneurship, The Valuation Challenge in Entrepreneurship, The Final Harvest of New Ventures, Technology, Business Incubation, India way – Entrepreneurship; Women Entrepreneurs – Strategies to develop Women Entrepreneurs, Institutions supporting Women Entrepreneurship in India.

TEXT BOOKS:

- 1. Entrepreneurship Development and Small Business Enterprises, Poornima M. Charantimath, 2e, Pearson, 2014.
- 2. Entrepreneurship, a South Asian Perspective, D.F. Kuratko and T. V. Rao, 3e, Cengage, 2012.
- 3. Entrepreneurship, Arya Kumar, 4 e, Pearson 2015.
- 4. The Dynamics of Entrepreneurial Development and Management, Vasant Desai, Himalaya Publishing House, 2015.

CS601OE: FUNDAMENTALS OF MANAGEMENT FOR ENGINEERS

III Year B.Tech. CSE/IT II-Sem

L	Т	Ρ	С
3	0	0	3

Course Objective: To understand the Management Concepts, applications of Concepts in Practical aspects of business and development of Managerial Skills for Engineers.

Course Outcome: The students understand the significance of Management in their Profession. The various Management Functions like Planning, Organizing, Staffing, Leading, Motivation and Control aspects are learnt in this course. The students can explore the Management Practices in their domain area.

UNIT - I

Introduction to Management: Evolution of Management, Nature & Scope-Functions of Management-Role of Manager-levels of Management-Managerial Skills - Challenges-Planning-Planning Process-Types of Plans-MBO

UNIT - II

Organization Structure & HRM: Organization Design-Organizational Structure-Departmentation– Delegation-Centralization - Decentralization-Recentralization-Organizational Culture- Organizational climate- Organizational change

Human Resource Management-HR Planning - Recruitment & Selection - Training & Development-Performance appraisal - Job satisfaction-Stress Management Practices

UNIT - III

Operation Management: Introduction to Operations Management-Principles and Types of Plant Layout-Methods of production (Job Batch and Mass production) - Method study and Work Measurement-Quality Management - TQM-Six sigma - Deming's Contribution to Quality - Inventory Management – EOQ - ABC Analysis - JIT System-Business Process Re-engineering (BPR)

UNIT - IV

Marketing Management: Introduction to Marketing-Functions of Marketing-Marketing vs. Selling-Marketing Mix - Marketing Strategies - Product Life Cycle - Market Segmentation - Types of Marketing - Direct Marketing-Network Marketing - Digital Marketing-Channels of Distribution - Supply Chain Management (SCM)

UNIT - V

Project Management: Introduction to Project Management-steps in Project Management - Project Planning - Project Life Cycle-Network Analysis-Program Evaluation & Review Technique (PERT)-Critical Path Method (CPM) - Project Cost Analysis - Project Crashing - Project Information Systems

TEXT BOOKS:

- 1. Management Essentials, Andrew DuBrin, 9e, Cengage Learning, 2012.
- 2. Fundamentals of Management, Stephen P.Robbins, Pearson Education, 2009.
- 3. Essentials of Management, Koontz Kleihrich, Tata Mc Graw Hill.
- 4. Management Fundamentals, Robert N Lussier, 5e, Cengage Learning, 2013.
- 5. Industrial Engineering and Management: Including Production Management, T.R.Banga, S.C Sharma , Khanna Publishers.

CS602OE: CYBER LAWS AND ETHICS

L T P C 3 0 0 3

III Year B.Tech. CSE/IT II-Sem

Course Objectives

- 1. To make the students understand the types of roles they are expected to play in the society as practitioners of the civil engineering profession
- 2. To develop some ideas of the legal and practical aspects of their profession.

Course Outcomes

- 1. The students will understand the importance of professional practice, Law and Ethics in their personal lives and professional careers.
- 2. The students will learn the rights and responsibilities as an employee, team member and a global citizen

UNIT-I

Introduction to Computer Security: Definition, Threats to security, Government requirements, Information Protection and Access Controls, Computer security efforts, Standards, Computer Security mandates and legislation, Privacy considerations, International security activity.

UNIT-II

Secure System Planning and administration, Introduction to the orange book, Security policy requirements, accountability, assurance and documentation requirements, Network Security, The Red book and Government network evaluations.

UNIT-III

Information security policies and procedures: Corporate policies- Tier 1, Tier 2 and Tier3 policies - process management-planning and preparation-developing policies-asset classification policy-developing standards.

UNIT- IV

Information security: fundamentals-Employee responsibilities- information classification-Information handling- Tools of information security- Information processing-secure program administration.

UNIT-V

Organizational and Human Security: Adoption of Information Security Management Standards, Human Factors in Security- Role of information security professionals.

REFERENCES:

- Debby Russell and Sr. G. T Gangemi, "Computer Security Basics (Paperback)", 2nd Edition, O' Reilly Media, 2006.
- 2. Thomas R. Peltier, "Information Security policies and procedures: A Practitioner's Reference", 2nd Edition Prentice Hall, 2004.
- 3. Kenneth J. Knapp, "Cyber Security and Global Information Assurance: Threat Analysis and Response Solutions", IGI Global, 2009.
- 4. Thomas R Peltier, Justin Peltier and John blackley," Information Security Fundamentals", 2nd Edition, Prentice Hall, 1996
- 5. Jonathan Rosenoer, "Cyber law: the Law of the Internet", Springer-verlag, 1997
- 6. James Graham, "Cyber Security Essentials" Averbach Publication T & F Group.

EC600OE: FUNDAMENTALS OF INTERNET OF THINGS

B.Tech. ECE III Year II Semester

L T P C 3 0 0 3

Course Objectives: The objectives of the course are to:

- 1. understand the concepts of Internet of Things and able to build IoT applications
- 2. Learn the programming and use of Arduino and Raspberry Pi boards.
- 3. Known about data handling and analytics in SDN.

Course Outcomes: Upon completing this course, the student will be able to

- 1. Known basic protocols in sensor networks.
- 2. Program and configure Arduino boards for various designs.
- 3. Python programming and interfacing for Raspberry Pi.
- 4. Design IoT applications in different domains.

UNIT – I

Introduction to Internet of Things, Characteristics of IoT, Physical design of IoT, Functional blocks of IoT, Sensing, Actuation, Basics of Networking, Communication Protocols, Sensor Networks.

UNIT - II

Machine-to-Machine Communications, Difference between IoT and M2M, Interoperability in IoT, Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino,

UNIT – III

Introduction to Python programming, Introduction to Raspberry Pi, Interfacing Raspberry Pi with basic peripherals, Implementation of IoT with Raspberry Pi

UNIT - IV

Implementation of IoT with Raspberry Pi, Introduction to Software defined Network (SDN), SDN for IoT, Data Handling and Analytics,

UNIT - V

Cloud Computing, Sensor-Cloud, Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Industrial IoT, Case Study: Agriculture, Healthcare, Activity Monitoring

TEXT BOOKS:

- 1. "The Internet 'of Things: Enabling Technologies, Platforms, and Use Cases", by Pethuru Raj and Anupama C. Raman (CRC Press)
- 2. "Make sensors": Terokarvinen, kemo, karvinen and villey valtokari, 1st edition, maker media, 2014.
- 3. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti

- 1. Vijay Madisetti, Arshdeep Bahga, "Internet of Things: A Hands-On Approach"
- 2. Waltenegus Dargie, Christian Poellabauer, "Fundamentals of Wireless Sensor Networks: Theory and Practice"
- 3. Beginning Sensor networks with Arduino and Raspberry Pi Charles Bell, Apress, 2013

EI600OE: BASICS OF SENSORS TECHNOLOGY

B.Tech. EIE III Year II Semester		

L T P C 3 0 0 3

Pre-requisites: Physics, Mathematics

Course Objectives:

- 1. To **provide** basic knowledge in transduction principles, sensors and transducer technology and measurement systems.
- 2. To **provide** better familiarity with the Theoretical and Practical concepts of Transducers.
- 3. To provide familiarity with different sensors and their application in real life.
- 4. To **provide** the knowledge of various measurement methods of physical and electrical parameters

Course Outcomes:

- 1. After completion of the course the student is able to:
- 2. **Identify** suitable sensors and transducers for real time applications.
- 3. Translate theoretical concepts into working models.
- 4. **Design** the experimental applications to engineering modules and practices.
- 5. Design engineering solution to the Industry/Society needs and develop products.

UNIT - I

Introduction to measurement systems

General concepts and terminology, measurement systems, sensor classifications: Analog Input and Output, Digital Input and Output, general input-output configuration, methods of correction.

Passive Sensors

Resistive Sensors: Potentiometers, Strain Gages, Resistive Temperature Detectors (RTDs), Thermistors, Light-dependent Resistors (LDRs), Resistive Hygrometers.

Capacitive Sensors: Variable capacitor and Differential capacitor.

Inductive Sensors: Reluctance variation sensors, Eddy current sensors, Linear variable differential transformers (LVDTs), Magneto elastic sensors, Electromagnetic sensors - Sensors based on Faraday's law of Electromagnetic induction, Touch Sensors: Capacitive, Resistive, Proximity Sensors.

UNIT II

Self-generating Sensors or active sensors

Thermoelectric Sensors: Thermocouples, Thermo electric effects, Common thermocouples, Practical thermocouple laws, Cold junction compensation in thermocouples circuits.

Piezoelectric Sensors: Piezoelectric effect, piezoelectric materials, applications.

UNIT III

VELOCITY AND ACCELERATION MEASUREMENT

Relative velocity – Translational and Rotational velocity measurements – Revolution counters and Timers - Magnetic and Photoelectric pulse counting stroboscopic methods. Accelerometers-different types, Gyroscopes-applications.

Density measurements – Strain Gauge load cell method – Buoyancy method - Air pressure balance method – Gamma ray method – Vibrating probe method.

UNIT IV

DENSITY, VISCOSITY AND OTHER MEASUREMENTS

Units of Viscosity, specific gravity scales used in Petroleum Industries, Different Methods of measuring consistency and Viscosity –Two float viscorator –Industrial consistency meter. Sound-Level Meters, Microphones, Humidity Measurement

UNIT V

CALIBRATION AND INTERFACING

Calibration using Master Sensors, Interfacing of Force, Pressure, Velocity, Acceleration, Flow, Density and Viscosity Sensors, Variable Frequency Drive

TEXT BOOKS:

- 1. Measurement Systems Applications and Design by Doeblin E.O., 4/e, McGraw Hill International, 1990.
- 2. Principles of Industrial Instrumentation Patranabis D. TMH. End edition 1997

REFERENCES:

- 1. Sensors and Transducers: D. Patranabis, TMH 2003
- 2. Wiley & Sons Ltd. (2006).
- 3. Sensor Technology Hand Book Jon Wilson, Newne 2004.
- 4. Instrument Transducers An Introduction to their Performance and design by Herman K.P. Neubrat, Oxford University Press.
- 5. Measurement system: Applications and Design by E. O. Doeblin, McGraw Hill Publications.
- 6. Electronic Instrumentation by H. S. Kalsi.

EE600OE: RELIABILITY ENGINEERING

III Year B.Tech. EEE II-Sem

L T P C 3 0 0 3

Prerequisite: Mathematics-III (Laplace Transforms, Numerical Methods and Complex variables) **Course Objectives:**

- To introduce the basic concepts of reliability, various models of reliability
- To analyze reliability of various systems
- To introduce techniques of frequency and duration for reliability evaluation of repairable systems

Course Outcomes: After completion of this course, the student will be able to

- model various systems applying reliability networks
- evaluate the reliability of simple and complex systems
- estimate the limiting state probabilities of repairable systems
- apply various mathematical models for evaluating reliability of irreparable systems

UNIT - I

Basic Probability Theory: Elements of probability, probability distributions, Random variables, Density and Distribution functions- Mathematical expected – variance and standard deviation **Binomial Distribution:** Concepts, properties, engineering applications.

UNIT- II

Network Modeling and Evaluation of Simple Systems: Basic concepts- Evaluation of network Reliability / Unreliability - Series systems, Parallel systems - Series-Parallel systems- Partially redundant systems- Examples.

Network Modeling and Evaluation of Complex Systems

Conditional probability method- tie set, Cut-set approach- Event tree and reduced event tree methods-Relationships between tie and cut-sets- Examples.

UNIT - III

Probability Distributions In Reliability Evaluation: Distribution concepts, Terminology of distributions, General reliability functions, Evaluation of the reliability functions, shape of reliability functions –Poisson distribution – normal distribution, exponential distribution, Weibull distribution.

Network Reliability Evaluation Using Probability Distributions: Reliability Evaluation of Series systems, Parallel systems – Partially redundant systems- determination of reliability measure- MTTF for series and parallel systems – Examples.

UNIT - IV

Discrete Markov Chains: Basic concepts- Stochastic transitional probability matrix- time dependent probability evaluation- Limiting State Probability evaluation- Absorbing states – Application.

Continuous Markov Processes: Modeling concepts- State space diagrams- Unreliability evaluation of single and two component repairable systems

UNIT - V

Frequency and Duration Techniques: Frequency and duration concepts, application to multi state problems, Frequency balance approach.

Approximate System Reliability Evaluation: Series systems – Parallel systems- Network reduction techniques- Cut set approach- Common mode failures modeling and evaluation techniques- Examples.

TEXT BOOKS:

- 1. Roy Billinton and Ronald N Allan, Reliability Evaluation of Engineering Systems, Plenum Press.
- 2. E. Balagurusamy, Reliability Engineering by Tata McGraw-Hill Publishing Company Limited

REFERENCES:

- 1. Reliability Engineering: Theory and Practice by Alessandro Birolini, Springer Publications.
- 2. An Introduction to Reliability and Maintainability Engineering by Charles Ebeling, TMH Publications.
- 3. Reliability Engineering by Elsayed A. Elsayed, Prentice Hall Publications.

EE601OE: RENEWABLE ENERGY SOURCES

III Year B.Tech. EEE II-Sem

Pre-requisites: None

Course Objectives:

- To recognize the awareness of energy conservation in students
- To identify the use of renewable energy sources for electrical power generation
- To collect different energy storage methods
- To detect about environmental effects of energy conversion

Course Outcomes: At the end of the course the student will be able to:

- Understand the principles of wind power and solar photovoltaic power generation, fuel cells.
- Assess the cost of generation for conventional and renewable energy plants
- Design suitable power controller for wind and solar applications
- Analyze the issues involved in the integration of renewable energy sources to the grid

UNIT - I

Introduction

Renewable Sources of Energy-Grid-Supplied Electricity-Distributed Generation-Renewable Energy Economics-Calculation of Electricity Generation Costs –Demand side Management Options –Supply side Management Options-Modern Electronic Controls of Power Systems.

Wind Power Plants

Appropriate Location -Evaluation of Wind Intensity -Topography -Purpose of the Energy Generated -General Classification of Wind Turbines-Rotor Turbines-Multiple-Blade Turbines Drag Turbines -Lifting Turbines-Generators and Speed Control used in Wind Power Energy Analysis of Small Generating Systems.

UNIT - II

Photovoltaic Power Plants

Solar Energy-Generation of Electricity by Photovoltaic Effect -Dependence of a PV Cell Characteristic on Temperature-Solar cell Output Characteristics-Equivalent Models and Parameters for Photovoltaic Panels-Photovoltaic Systems-Applications of Photovoltaic Solar Energy-Economical Analysis of Solar Energy.

Fuel Cells: The Fuel Cell-Low and High Temperature Fuel Cells-Commercial and Manufacturing Issues Constructional Features of Proton Exchange-Membrane Fuel Cells –Reformers-Electro-lyzer Systems and Related Precautions-Advantages and Disadvantages of Fuel Cells-Fuel Cell Equivalent Circuit-Practical Determination of the Equivalent Model Parameters -Aspects of Hydrogen as Fuel.

UNIT - III

Induction Generators

Principles of Operation-Representation of Steady-State Operation-Power and Losses Generated-Self-Excited Induction Generator-Magnetizing Curves and Self-Excitation Mathematical Description of the Self-Excitation Process-Interconnected and Stand-alone operation -Speed and Voltage Control - Economical Aspects.

UNIT - IV

Storage Systems

Energy Storage Parameters-Lead–Acid Batteries-Ultra Capacitors-Flywheels –Superconducting Magnetic Storage System-Pumped Hydroelectric Energy Storage - Compressed Air Energy Storage - Storage Heat -Energy Storage as an Economic Resource.

L	Т	Ρ	С
3	0	0	3

UNIT - V

Integration of Alternative Sources of Energy

Principles of Power Injection-Instantaneous Active and Reactive Power Control Approach Integration of Multiple Renewable Energy Sources-Islanding and Interconnection Control-DG Control and Power Injection.

Interconnection of Alternative Energy Sources with the Grid:

Interconnection Technologies - Standards and Codes for Interconnection - Interconnection Considerations - Interconnection Examples for Alternative Energy Sources.

TEXT BOOKS:

- 1. Felix A. Farret, M. Godoy Simoes, "Integration of Alternative Sources of Energy", John Wiley& Sons, 2006.
- 2. Solanki: Renewable Energy Technologies: Practical Guide for Beginners, PHI Learning Pvt. Ltd., 2008.

REFERENCES:

- 1. D. Mukherjee: Fundamentals of Renewable Energy Systems, New Age International publishers, 2007.
- 2. Remus Teodorescu, Marco Liserre, Pedro Rodríguez: Grid Converters for Photovoltaic and Wind Power Systems, John Wiley & Sons, 2011.
- 3. Gilbert M. Masters: Renewable and Efficient Electric Power Systems, John Wiley & Sons, 2004.

ME600OE: QUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS

B.Tech. Mech. Engg. /Aero. Engg. III Year II Sem.

L T P C 3 0 0 3

Course Objectives:

- Understand the problem, identifying decision variables, objective and constraints
- Formulation of Optimization Problem by constructing Objective Function and Constraints functions
- Learn to select appropriate Optimization Technique for the formulated Optimization Problem
- Understood the procedure involved in the selected Optimization Technique
- Solve the Optimization Model with the selected Optimization Technique

Course Outcomes: At the end of the course, student will be :

- Familiar with issues that would crop up in business
- Able to formulate Mathematical Model to resolve the issue
- Able to select technique for solving the formulated Mathematical Model
- Able to analyze the results obtained through the selected technique for implementation.

UNIT – I:

Introduction and Linear Programming: Nature and Scope of O.R.–Analyzing and Defining the Problem, Developing A Model, Types of models, Typical Applications of Operations Research; Linear Programming: Graphical Method, Simplex Method; Solution methodology of Simplex algorithm, Artificial variables; Duality Principle, Definition of the Dual Problem, Primal - Dual Relationships.

UNIT – II:

Transportation and Assignment Models: Definition and Application of the Transportation Model, Solution of the Transportation Problem, the Assignment Model, & Variants of assignment problems. Traveling Salesman Problem.

UNIT – III:

Replacement Model: Replacement of Capital Cost items when money's worth is **not** considered, Replacement of Capital Cost items when money's worth is considered, Group replacement of low-cost items.

UNIT – IV:

Game Theory and Decision Analysis: Introduction – Two Person Zero-Sum Games, Pure Strategies, Games with Saddle Point, Mixed strategies, Rules of Dominance, Solution Methods of Games without Saddle point – Algebraic, arithmetic methods. Decision Analysis: Introduction to Decision Theory, Steps In the Decision Making, the Different environments In Which Decisions Are Made, Criteria For Decision Making Under Risk and Uncertainty, The Expected Value Criterion With Continuously Distributed Random Variables, Decision Trees, Graphic Displays of the Decision Making Process.

UNIT – V:

Queuing Theory and Simulation: Basic Elements of the Queuing Model, Poisson Arrivals and Exponential Service times; Different Queing models with FCFS Queue disciplne: Single service station and infinite population, Single service station and finite population, Multi service station models with infinite population. **Simulation**: Nature and Scope, Applications, Types of simulation, Role of Random Numbers, Inventory Example, Queuing Examples, Simulation Languages.

TEXTBOOKS:

- 1. Operations Research: Theory and Applications/ J. K. Sharma: / Macmillan, 2008.
- 2. Operations Research/ Er. Prem Kumar Gupta & Dr. D. S. Hira / S. Chana, 2016

- 1. Introduction To Operations Research; Hillier/Lieberman/ TMH, 2008.
- 2. Render: Quantitative Analysis for Management, Pearson, 2009
- 3. Quantitative Analysis for Business Decisions / Sridharabhat/ HPH, 2009.
- 4. Operations Research / R. Panneerselvam/ PHI, 2008.
- 5. Operations Research: An Introduction / Hamdy, A. Taha/ PHI, 2007.
- 6. Quantitative Techniques/ Selvaraj/ Excel, 2009
- 7. Quantitative Techniques for Decision Making / Gupta and Khanna/ PHI, 2009.
- 8. Operations Research/ Ravindran, Phillips, Solberg/ Wiley, 2009.
- 9. Quantitative Methods for Business/ Anderson, Sweeney, Williams/ 10/e, Cengage, 2008

MT600OE: INDUSTRIAL MANAGEMENT

L T P C 3 0 0 3

B.Tech. III Year Mechatronics II Sem.

UNIT- I

Introduction to Management: Entrepreneurship and organization – Nature and Importance of Management, Functions of Management, Taylor's Scientific Management Theory, Fayol's Principles of Management, Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation, Systems Approach to Management, Leadership Styles, Social responsibilities of Management

UNIT - II

Designing Organizational Structures: Departmentalization and Decentralization, Types of Organization structures – Line organization, Line and staff organization, functional organization, Committee organization, matrix organization, Virtual Organization, Cellular Organization, team structure, boundary less organization, inverted pyramid structure, lean and flat organization structure and their merits, demerits and suitability.

UNIT - III

Operations Management: Objectives- product design process- Process selection-Types of production system(Job, batch and Mass Production),Plant location-factors- Urban-Rural sites comparison- Types of Plant Layouts- Design of product layout- Line balancing(RPW method) Value analysis-Definition-types of values- Objectives- Phases of value analysis- Fast diagram

UNIT - IV:

Work Study: Introduction — definition — objectives — steps in work study — Method study — definition, objectives — steps of method study. Work Measurement — purpose — types of study — stop watch methods — steps — key rating — allowances — standard time calculations — work sampling.

Statistical Quality Control: variables-attributes, Shewart control charts for variables- chart, R chart, – Attributes- Defective-Defect- Charts for attributes-p-chart -c chart (simple Problems), Acceptance Sampling- Single sampling- Double sampling plans-OC curves.

UNIT - V

Job Evaluation: Methods of job evaluation — simple routing objective systems — classification method factor comparison method, point method, benefits of job evaluation and limitations. **Project Management (PERT/CPM):** Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method (CPM), Identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing. (simple problems)

TEXT BOOKS

- 1. Industrial Engineering and Management/O.P. Khanna/Khanna Publishers.
- 2. Industrial Engineering and Management Science/T.R. Banga and S.C. Sarma /Khanna Publishers.

- 1. Motion and Time Study by Ralph M Barnes! John Willey & Sons Work Study by ILO.
- 2. Human factors in Engineering & Design/Ernest J McCormick /TMH.
- 3. Production & Operation Management /Paneer Selvam/PHI.
- 4. Industrial Engineering Management/NVS Raju/Cengage Learning.
- 5. Industrial Engineering Hand Book/Maynard.
- 6. Industrial Engineering Management I Ravi Shankar/ Galgotia.

MT6010E: NON-CONVENTIONAL ENERGY SOURCES

B.Tech. III Year Mechatronics II Sem.

L T P C 3 0 0 3

UNIT – I

Principles Of Solar Radiation: Role and potential of new and renewable source, the solar energy option, Environmental impact of solar power, physics of the sun, the solar constant, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data.

UNIT-II

Solar Energy Collection: Flat plate and concentrating collectors, classification of concentrating collectors, orientation and thermal analysis, advanced collectors.

Direct Energy Conversion: Need for DEC, Carnot cycle, limitations, principles of DEC. Thermoelectric generators, seebeck, peltier and joul Thomson effects, Figure of merit, materials, applications, MHD generators, principles, dissociation and ionization, hall effect, magnetic flux, MHD accelerator, MHD Engine, power generation systems, electron gas dynamic conversion, economic aspects. Fuel cells, principles, faraday's law's, thermodynamic aspects, selection of fuels and operating conditions.

UNIT-III

Solar Energy Storage And Applications: Different methods, Sensible, latent heat and stratified storage, solar ponds. Solar Applications- solar heating/cooling technique, solar distillation and drying, photovoltaic energy conversion.

Ocean Energy: OTEC, Principles utilization, setting of OTEC plants, thermodynamic cycles. Tidal and wave energy: Potential and conversion techniques, mini-hydel power plants, and their economics.

UNIT-IV

Wind Energy: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, Betz criteria.

UNIT-V

Bio-Mass: Principles of Bio-Conversion, Anaerobic/aerobic digestion, types of Bio-gas digesters, gas yield, combustion characteristics of bio-gas, utilization for cooking, I.C. Engine operation and economic aspects.

Geothermal Energy: Resources, types of wells, methods of harnessing the energy, potential in India.

TEXTBOOKS:

- 1. Non-Conventional Energy Sources /G.D. Rai
- 2. Renewable Energy Technologies /Ramesh & Kumar/Narosa

- 1. Renewable energy resources/ Tiwari and Ghosal/Narosa.
- 2. Non-Conventional Energy / Ashok V Desai /Wiley Eastern.
- 3. Non-Conventional Energy Systems / K Mittal/Wheeler
- 4. Solar Energy/Sukhame

PE600OE: GENERAL GEOLOGY

B.Tech. Petroleum Engg. III Year II Sem.

L T/P/D C 3 0/0/0 3

Prerequisites: None

Course Objective: To expose the students to different geological environments, which relate to petroleum industry

Course Outcome: The student would understand the basics of geology, viz: formation of earth, layers of earth, different types of rocks, formation of sedimentary basins and the micro fossils and their relationship to oil and gas.

UNIT - I

Dimensions of earth, structure, composition and origin of earth-envelops of the Earth- crust, mantle, core. Internal dynamic process- Plate tectonics- continental drift, Earthquake and volcanoes. External dynamic process- weathering, erosion and deposition.

UNIT - II

Fundamental concepts in Geomorphology-geomorphic processes distribution of landforms-drainage patterns –development, Landforms in relation to rocks types, paleochannels, buried channels.

UNIT - III

Geological work of rivers, wind, Ocean and glaciers and the landforms created by them.

UNIT - IV

Origin of igneous, sedimentary and metamorphic rocks. Sedimentary structures-petrographic character of conglomerate, sandstone, shale, limestones.

Introduction to sedimentary basins and deltaic systems. Topographic maps, thematic maps, Topographic and thematic profiles.

UNIT - V

Palaeontology: Introduction to Palaeontology, Fossils and Fossilization. Micropaleontology - Palynology: Distribution of microfossils-Foraminifera, Radiolaria, Conodonts, Ostracodes, Diatoms. Importance of micro fossils in oil exploration.

TEXT BOOK:

1. Engineering Geology, F. G. Bell, 2nd Edition, Butterworth Heimann, 2007.

- 1. Text book of Geology, P. K Mukharjee, The World Press Pvt Ltd., Calcutta, 2005.
- 2. Rutleys Elements of Mineralogy, 27 Ed., N. H. Read, Allen & Unwin Australia 1988.

MM600OE: TESTING OF MATERIALS

III B.Tech.(MME) II Semester

Course Objectives:

1. To gain and understanding of the response of various metals under the application of stress and/or temperature.

L T P C 3 0 0 3

- 2. To build necessary theoretical back ground of the role of lattice defects in governing both elastic and plastic properties of metals will be discussed.
- 3. Obtain a working knowledge of various hardness testing machines BHN, VHN, RHN
- 4. Obtain a working knowledge of creep and fatigue and analysis of data.

Course Outcomes: At the end of the course the student will be able to:

- 1. Classify mechanical testing of ferrous and non-ferrous metals and alloys.
- 2. Recognize the importance of crystal defects including dislocations in plastic deformation.
- 3. Identify the testing methods for obtaining strength and hardness.
- 4. Examine the mechanisms of materials failure through fatigue and creep

UNIT I

Introduction, Importance of testing Hardness Test: Methods of hardness testing – Brinell, Vickers, Rockwell hardness tests. The Impact Test: Notched bar impact test and its significance, Charpy and Izod Tests, fracture toughness testing - COD and CTOD tests, significance of transition temperature curve.

UNIT II

The Tension Test: Engineering stress-strain and True stress-strain curves. Tensile properties, conditions for necking. Stress-Strain diagrams for steel, Aluminum and cast iron.

UNIT III

Fatigue Test: Introduction, Stress cycles, S-N Curve, Effect of mean stress, Mechanism of fatigue failure, Effect of stress concentration, size, surface condition and environments on fatigue.

UNIT IV

Creep and Stress Rupture: Introduction, The creep curve, Stress-rupture test, Structural changes during creep, Mechanism of creep deformation, theories of creep. Fracture at elevated temperature.

UNIT V

NDT: Principle, Operation, Advantages and Limitations of Liquid Penetrant, Magnetic Particle, Radiography and Ultrasonic tests.

TEXT BOOKS:

- 1. Mechanical Metallurgy G. E. Dieter, Third edition, published by New York Mc GrawHill, 1986.
- 2. Mechanical behavior Ed. Wulf.

- 1. Mechanical Metallurgy White & Lemay.
- 2. Testing of Metallic Materials A.V.K. Suryanarayana

MM601OE: ALLOY STEELS

L T P C 3 0 0 3

III B.Tech.(MME) II Semester

Course objectives:

- 1. Low carbon, Medium carbon and High carbon steels with respect to structure property correlations and strengthening mechanisms with alloy additions
- 2. Ultra-high strength steels, Stainless steels and Tool steels with respect to heat treatment, properties and applications.

Course Outcomes:

- 1. Ability to understand different types of alloys used in alloy steels.
- 2. Ability to solve different metallurgical problems in alloy steels.
- 3. It has a lot of scope in R&D and in automobile engineering.

UNIT I

Low-carbon Mild steels: Introduction; cold forming steels, High strength packing steels; HSLA steels; Low-carbon Ferrite pearlite steels – structure property relation-ships, strengthening mechanisms, Formability of HSLA steels.

UNIT II

Medium- High carbon ferrite-pearlite steels – structure property relationships, Bainitic steels; Low-Carbon bainitic steels-requirements, development and choice of alloying elements, Mechanical properties, microstructure and impact properties; High-Carbon bainitic steels.

UNIT III

Ultra-high strength steels: Introduction, steels tempered at low temperatures, secondary hardening, thermo- mechanical treatments, rapid austenitizing treatments, structure-property relationships in tempered martensite, cold-drawn pearlite steels, maraging steels.

UNIT IV

Stainless steels: Classification, Composition, Microstructures, Heat treatment an application.

UNIT V

Tool steels and Heat resistant steels: Classification, Composition, Micro structure an Heat treatment and application.

TEXT BOOKS:

- 1. Physical Metallurgy and the Design of steels: F. B. Pickering, Applied Science publisher, London, 1978.
- 2. The physical Metallurgy of steels: W. C. Leslie by Hempisphere Publishers Corporation, 1981.

- 1. Alloys Steels Wilson.
- 2. Heat Treatment of steels Rajan & Sharma

MN600OE: INTRODUCTION TO MINING TECHNOLOGY

Engg. II-Semester	L	Т	Ρ	С
	3	0	0	3

Pre-Requisites: NIL

III B.Tech. Mining.

Course Objectives:

The student is expected to learn the fundamentals of mining engineering so as to encourage multidisciplinary research and application of other branches of engineering to mining technology

Course Outcomes: Upon completion of the course, the student shall be able to understand various stages in the life of the mine, drilling, blasting and shaft sinking.

UNIT-I

Introduction: Distribution of mineral deposits in India and other countries, mining contributions to civilization, mining terminology,

UNIT-II

Stages in the life of the mine - prospecting, exploration, development, exploitation and reclamation. Access to mineral deposit- selection, location, size and shape (incline, shaft and adit), brief overview of underground and surface mining methods.

UNIT-III

Drilling: Types of drills, drilling methods, electric, pneumatic and hydraulic drills, drill steels and bits, drilling rigs, and jumbos.

UNIT-IV

Explosives: Classification, composition, properties and tests, fuses, detonators, blasting devices and accessories, substitutes for explosives, handling and storage, transportation of explosives.; Rock blasting: Mechanism of rock blasting, blasting procedure, and pattern of shot holes.

UNIT-V

Shaft sinking: Ordinary and special methods, problems, and precautions, shaft supports and lining.

TEXT BOOKS:

- 1. R. P. Pal, Rock blasting effect and operation, A. A. Balkema, 1st Ed, 2005.
- 2. D. J. Deshmukh, Elements of mining technology, Vol. 1, Central techno, 7th Ed, 2001

- 1. C. P. Chugh, Drilling technology handbook, Oxford and IBH, 1st Ed, 1977.
- 2. R. D. Singh, Principles and practices of modern coal mining, New age international, 1st Ed, 1997.

MN601OE: COAL GASIFICATION, CBM & SHALE GAS

III B.Tech. Mining. Engg. II-Semester	LTPC
	3 0 0 3

Pre-Requisites: NIL

Course Objectives: To specialize the students with additional knowledge on geological and technological factors of coal gasification industry mining methods of underground coal gasification, linkage techniques etc.

Course Outcomes: Student can get specialized in the underground coal gasification concepts, application and future scope in various geomining conditions.

UNIT - I

Underground Coal Gasification (UCG) Concept; Chemistry, conditions suitable for UCG, Principles of UCG., Merits and Demerits.

UNIT - II

UCG Process Component factors: Technology of UCG, opening up of coal seam for UCG.

UNIT - III

Mining methods of UCG: Chamber method, Stream method, Borehole procedure method, Blind bore hole method.

UNIT - IV

Non-Mining methods of UCG: Level seams, Inclined seams.

UNIT - V

Linkage Techniques: Pekcolation linkage, Electro linkage, Boring linkage, compressed-air-linkage, Hydraulic fracture linkage. Future Scope and Development: Innovations.

TEXT BOOKS:

- 1. Underground Coal Mining Methods J.G. SINGH
- 2. Winning and Working Coal in India Vol.II- R.T. Deshmukh and D.J. Deshmukh.

REFERENCE BOOK:

1. Principles and Practices of Modern Coal Mining - R.D. SINGH